Yen-Chung Chiang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4595588/publications.pdf

Version: 2024-02-01

1307594 1199594 27 269 12 7 citations g-index h-index papers 27 27 27 121 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Improved three-point formulas considering the interface conditions in the finite-difference analysis of step-index optical devices. Journal of Lightwave Technology, 2000, 18, 243-251.	4.6	101
2	Improved full-vectorial finite-difference mode solver for optical waveguides with step-index profiles. Journal of Lightwave Technology, 2002, 20, 1609-1618.	4.6	59
3	Finite-Difference Modeling of Dielectric Waveguides With Corners and Slanted Facets. Journal of Lightwave Technology, 2009, 27, 2077-2086.	4.6	24
4	Finite-Difference Frequency-Domain Analysis of 2-D Photonic Crystals With Curved Dielectric Interfaces. Journal of Lightwave Technology, 2008, 26, 971-976.	4.6	16
5	A V-Band Push-Push VCO With Wide Tuning Range Using <formula formulatype="inline"><tex notation="TeX">\$0.18~mu{m m}\$</tex></formula> CMOS Process. IEEE Microwave and Wireless Components Letters, 2015, 25, 115-117.	3.2	14
6	A 60 GHz CMOS VCO Using a Fourth-Order Resonator. IEEE Microwave and Wireless Components Letters, 2015, 25, 609-611.	3.2	14
7	Pseudospectral Frequency-Domain Formulae Based on Modified Perfectly Matched Layers for Calculating Both Guided and Leaky Modes. IEEE Photonics Technology Letters, 2010, 22, 908-910.	2.5	9
8	A low noise amplifier with coupled matching structure for V-band applications. , 2015, , .		5
9	Low-noise amplifier with 12.1 dB gain and 5.456 dB NF for V-band applications in GaAs 0.15& $\#$ x03BC;m pHEMT process. , 2012, , .		4
10	A transformer-coupled power amplifier in 90-nm CMOS process for V-band applications. , 2017, , .		4
11	Higher order finite-difference frequency domain analysis of 2-D photonic crystals with curved dielectric interfaces. Optics Express, 2009, 17, 3305.	3.4	3
12	A low-power K-band divide-by-5 injection-locked frequency divider. , 2016, , .		3
13	A V-band power amplifier using Marchand balun for power combining in 90n-nm CMOS process. , 2017, , .		3
14	A divide-by-3 injection-locked frequency divider in 0.18 & amp; $\#$ x00B5; $\#$ CMOS process for K band applications. , 2015, , .		2
15	A Novel K-Band Divide-by-4 Injection-Locked Frequency Divider. , 2018, , .		2
16	A 3.51â€toâ€3.8 GHz divideâ€byâ€3 injectionâ€locked frequency divider. Microwave and Optical Technology Letters, 2010, 52, 490-493.	1.4	1
17	A V-band power amplifier with 11.6dB gain and 7.8W PAE in GaAs 0.15W amp; #x00B5; m pHEMT process technology. , 2012 , , .		1
18	A 42.15–68.35 dBΩ tunable gain transimpedance amplifier using 0.18â€Ĥ⁄4m CMOS process. Microwave and Optical Technology Letters, 2015, 57, 830-832.	1.4	1

#	Article	IF	CITATIONS
19	A Novel Injection-Locked Frequency Tripler for V-band Applications. , 2019, , .		1
20	A Study on the Variable Inductor Design by Switching the Main Paths and the Coupling Coils. Electronics (Switzerland), 2021, 10, 1856.	3.1	1
21	A 60ÂGHz CMOS Transmit/Receive Switch Using Leakage Cancellation and Body Bias Technique. Journal of Infrared, Millimeter, and Terahertz Waves, 2022, 43, 94-107.	2.2	1
22	Improved Finite-Difference Frequency-Domain Scheme for the Analysis of 2-D Photonic Crystals. IEEE MTT-S International Microwave Symposium, 2007, , .	0.0	0
23	A back-gate coupling QVCO with Kvco linearization technique. , 2009, , .		0
24	A V-band power amplifier with 11.9 dB gain in CMOS 90-nm process technology. , 2012, , .		0
25	A 60 GHz power amplifier using lange couplers in GaAS 0.15 μm pHEMT process. Microwave and Optical Technology Letters, 2012, 54, 2150-2153.	1.4	0
26	A V-band push-push VCO with wide tuning range in 0.18 & amp; #x00B5; m CMOS process. , 2014, , .		0
27	A downâ€conversion mixer using 90â€nm CMOS process for 60â€Ghz applications. Microwave and Optical Technology Letters, 2014, 56, 2456-2458.	1.4	O