Rizwan Ul Haq

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4595485/publications.pdf Version: 2024-02-01

RIZWAN LL HAO

#	Article	IF	CITATIONS
1	MHD flow of a Casson fluid over an exponentially shrinking sheet. Scientia Iranica, 2012, 19, 1550-1553.	0.3	277
2	MHD three-dimensional Casson fluid flow past a porous linearly stretching sheet. AEJ - Alexandria Engineering Journal, 2013, 52, 577-582.	3.4	267
3	Numerical study of MHD boundary layer flow of a Maxwell fluid past a stretching sheet in the presence of nanoparticles. Journal of the Taiwan Institute of Chemical Engineers, 2014, 45, 121-126.	2.7	233
4	Numerical solutions of Magnetohydrodynamic boundary layer flow of tangent hyperbolic fluid towards a stretching sheet. Indian Journal of Physics, 2013, 87, 1121-1124.	0.9	188
5	Thermal radiation and slip effects on MHD stagnation point flow of nanofluid over a stretching sheet. Physica E: Low-Dimensional Systems and Nanostructures, 2015, 65, 17-23.	1.3	180
6	Cu-AlO/Water hybrid nanofluid through a permeable surface in the presence of nonlinear radiation and variable thermal conductivity via LSM. International Journal of Heat and Mass Transfer, 2018, 126, 1347-1356.	2.5	177
7	Convective heat transfer in MHD slip flow over a stretching surface in the presence of carbon nanotubes. Physica B: Condensed Matter, 2015, 457, 40-47.	1.3	171
8	Radiation effects on MHD stagnation point flow of nano fluid towards a stretching surface with convective boundary condition. Chinese Journal of Aeronautics, 2013, 26, 1389-1397.	2.8	149
9	MHD Three-Dimensional Boundary Layer Flow of Casson Nanofluid Past a Linearly Stretching Sheet With Convective Boundary Condition. IEEE Nanotechnology Magazine, 2014, 13, 109-115.	1.1	144
10	Heat transfer analysis of water-based nanofluid over an exponentially stretching sheet. AEJ - Alexandria Engineering Journal, 2014, 53, 219-224.	3.4	140
11	Shape effects of MoS2 nanoparticles on rotating flow of nanofluid along a stretching surface with variable thermal conductivity: A Galerkin approach. International Journal of Heat and Mass Transfer, 2018, 124, 706-714.	2.5	118
12	Thermal and velocity slip effects on Casson nanofluid flow over an inclined permeable stretching cylinder via collocation method. International Journal of Heat and Mass Transfer, 2018, 122, 1255-1263.	2.5	110
13	Thermophysical effects of carbon nanotubes on MHD flow over a stretching surface. Physica E: Low-Dimensional Systems and Nanostructures, 2014, 63, 215-222.	1.3	104
14	Numerical solution of non-Newtonian nanofluid flow over a stretching sheet. Applied Nanoscience (Switzerland), 2014, 4, 625-631.	1.6	102
15	MHD stagnation point flow of Carreau fluid toward a permeable shrinking sheet: Dual solutions. Ain Shams Engineering Journal, 2014, 5, 1233-1239.	3.5	96
16	MHD natural convection flow enclosure in a corrugated cavity filled with a porous medium. International Journal of Heat and Mass Transfer, 2018, 121, 1168-1178.	2.5	95
17	Natural convection of water-based carbon nanotubes in a partially heated rectangular fin-shaped cavity with an inner cylindrical obstacle. Physics of Fluids, 2019, 31, .	1.6	92
18	Flow and heat transfer analysis of water and ethylene glycol based Cu nanoparticles between two parallel disks with suction/injection effects. Journal of Molecular Liquids, 2016, 221, 298-304.	2.3	90

#	Article	IF	CITATIONS
19	Mixed convection flow of thermally stratified MHD nanofluid over an exponentially stretching surface with viscous dissipation effect. Journal of the Taiwan Institute of Chemical Engineers, 2017, 71, 307-314.	2.7	90
20	Mixed convection stagnation flow of a micropolar nanofluid along a vertically stretching surface with slip effects. Meccanica, 2015, 50, 2007-2022.	1.2	88
21	Numerical Study of Boundary Layer Flow and Heat Transfer of Oldroyd-B Nanofluid towards a Stretching Sheet. PLoS ONE, 2013, 8, e69811.	1.1	84
22	Effect of Thermal Radiation for Megnetohydrodynamic Boundary Layer Flow of a Nanofluid Past a Stretching Sheet with Convective Boundary Conditions. Journal of Computational and Theoretical Nanoscience, 2014, 11, 32-40.	0.4	82
23	MHD squeezed flow of water functionalized metallic nanoparticles over a sensor surface. Physica E: Low-Dimensional Systems and Nanostructures, 2015, 73, 45-53.	1.3	81
24	Heat transfer analysis of CuO-water enclosed in a partially heated rhombus with heated square obstacle. International Journal of Heat and Mass Transfer, 2018, 118, 773-784.	2.5	78
25	Thermal management of water based SWCNTs enclosed in a partially heated trapezoidal cavity via FEM. International Journal of Heat and Mass Transfer, 2017, 112, 972-982.	2.5	74
26	Hydromagnetic flow of ferrofluid in an enclosed partially heated trapezoidal cavity filled with a porous medium. Journal of Magnetism and Magnetic Materials, 2020, 499, 166241.	1.0	74
27	Water functionalized CuO nanoparticles filled in a partially heated trapezoidal cavity with inner heated obstacle: FEM approach. International Journal of Heat and Mass Transfer, 2019, 128, 401-417.	2.5	73
28	Thermal radiation and slip effects on MHD stagnation point flow of non-Newtonian nanofluid over a convective stretching surface. Neural Computing and Applications, 2019, 31, 207-217.	3.2	72
29	Heat transport phenomenon in the ferromagnetic fluid over a stretching sheet with thermal stratification. Results in Physics, 2017, 7, 854-861.	2.0	66
30	Least square study of heat transfer of water based Cu and Ag nanoparticles along a converging/diverging channel. Journal of Molecular Liquids, 2018, 249, 856-867.	2.3	66
31	Model-based analysis of micropolar nanofluid flow over a stretching surface. European Physical Journal Plus, 2014, 129, 1.	1.2	65
32	Numerical simulation of water based magnetite nanoparticles between two parallel disks. Advanced Powder Technology, 2016, 27, 1568-1575.	2.0	65
33	Dual nature solution of water functionalized copper nanoparticles along a permeable shrinking cylinder: FDM approach. International Journal of Heat and Mass Transfer, 2019, 129, 1242-1249.	2.5	65
34	Heat generation/absorption and nonlinear radiation effects on stagnation point flow of nanofluid along a moving surface. Results in Physics, 2018, 8, 404-414.	2.0	64
35	Buoyancy and Radiation Effect on Stagnation Point Flow of Micropolar Nanofluid Along a Vertically Convective Stretching Surface. IEEE Nanotechnology Magazine, 2015, 14, 42-50.	1.1	63
36	Flow and heat transfer of ferrofluids over a flat plate with uniform heat flux. European Physical Journal Plus, 2015, 130, 1.	1.2	62

#	Article	IF	CITATIONS
37	Thermophysical analysis for three-dimensional MHD stagnation-point flow of nano-material influenced by an exponential stretching surface. Results in Physics, 2018, 8, 316-323.	2.0	62
38	Effects of aligned magnetic field and CNTs in two different base fluids over a moving slip surface. Journal of Molecular Liquids, 2017, 243, 682-688.	2.3	61
39	Numerical study of unsteady MHD flow of Williamson nanofluid in a permeable channel with heat source/sink and thermal radiation. European Physical Journal Plus, 2018, 133, 1.	1.2	61
40	MHD pulsatile flow of engine oil based carbon nanotubes between two concentric cylinders. Results in Physics, 2017, 7, 57-68.	2.0	60
41	Entropy generation analysis for non-Newtonian nanofluid with zero normal flux of nanoparticles at the stretching surface. Journal of the Taiwan Institute of Chemical Engineers, 2016, 63, 226-235.	2.7	59
42	Numerical study of Williamson nano fluid flow in an asymmetric channel. Results in Physics, 2013, 3, 161-166.	2.0	58
43	Dual solutions in MHD stagnation-point flow of Prandtl fluid impinging on shrinking sheet. Applied Mathematics and Mechanics (English Edition), 2014, 35, 813-820.	1.9	58
44	Thermal management of MHD nanofluid within the porous medium enclosed in a wavy shaped cavity with square obstacle in the presence of radiation heat source. International Journal of Heat and Mass Transfer, 2019, 139, 87-94.	2.5	58
45	Active and passive controls of nanoparticles in Maxwell stagnation point flow over a slipped stretched surface. Meccanica, 2017, 52, 1527-1539.	1.2	57
46	Thermal management of water-based carbon nanotubes enclosed in a partially heated triangular cavity with heated cylindrical obstacle. International Journal of Heat and Mass Transfer, 2019, 131, 724-736.	2.5	57
47	Effects of mass transfer on MHD three dimensional flow of a Prandtl liquid over a flat plate in the presence of chemical reaction. Results in Physics, 2017, 7, 3465-3471.	2.0	55
48	Heat transfer analysis for three-dimensional stagnation-point flow over an exponentially stretching surface. Chinese Journal of Physics, 2017, 55, 1552-1560.	2.0	53
49	Wavelets solution of MHD 3-D fluid flow in the presence of slip and thermal radiation effects. Physics of Fluids, 2018, 30, .	1.6	52
50	Heat exchange within the partially heated C-shape cavity filled with the water based SWCNTs. International Journal of Heat and Mass Transfer, 2018, 127, 506-514.	2.5	49
51	Heat and fluid flow of water and ethylene-glycol based Cu-nanoparticles between two parallel squeezing porous disks: LSGM approach. International Journal of Heat and Mass Transfer, 2018, 123, 888-895.	2.5	47
52	An efficient analysis for N-soliton, Lump and lump–kink solutions of time-fractional (2+1)-Kadomtsev–Petviashvili equation. Physica A: Statistical Mechanics and Its Applications, 2019, 528, 121320.	1.2	45
53	Effects of homogeneous-heterogeneous reactions and thermal radiation on magneto-hydrodynamic Cu-water nanofluid flow over an expanding flat plate with non-uniform heat source. Journal of Central South University, 2019, 26, 1161-1171.	1.2	44
54	Magnetohydrodynamic (MHD) stagnation point flow of nanofluid past a stretching sheet with convective boundary condition. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2016, 38, 1155-1164.	0.8	43

#	Article	IF	CITATIONS
55	Closed form dual nature solutions of fluid flow and heat transfer over a stretching/shrinking sheet in a porous medium. Chinese Journal of Physics, 2017, 55, 1284-1293.	2.0	43
56	Active and zero flux of nanoparticles between a squeezing channel with thermal radiation effects. Journal of Molecular Liquids, 2016, 223, 289-298.	2.3	42
57	Aligned magnetic field effects on water based metallic nanoparticles over a stretching sheet with PST and thermal radiation effects. Physica E: Low-Dimensional Systems and Nanostructures, 2017, 89, 33-42.	1.3	41
58	Melting heat transfer analysis of Sisko fluid over a moving surface with nonlinear thermal radiation via Collocation method. International Journal of Heat and Mass Transfer, 2018, 126, 1034-1042.	2.5	41
59	Wavelet analysis of stagnation point flow of non-Newtonian nanofluid. Applied Mathematics and Mechanics (English Edition), 2019, 40, 1211-1226.	1.9	41
60	An efficient algorithm based on Gegenbauer wavelets for the solutions of variable-order fractional differential equations. European Physical Journal Plus, 2018, 133, 1.	1.2	40
61	Convective heat transfer and MHD effects on Casson nanofluid flow over a shrinking sheet. Open Physics, 2014, 12, .	0.8	36
62	Thermal and velocity slip effects on MHD mixed convection flow of Williamson nanofluid along a vertical surface: Modified Legendre wavelets approach. Physica E: Low-Dimensional Systems and Nanostructures, 2018, 104, 130-137.	1.3	34
63	An entropy generation analysis for MHD water based Fe3O4 ferrofluid through a porous semi annulus cavity via CVFEM. International Communications in Heat and Mass Transfer, 2019, 108, 104295.	2.9	34
64	Impact of partial slip on mixed convective flow towards a Riga plate comprising micropolar TiO ₂ -kerosene/water nanoparticles. International Journal of Numerical Methods for Heat and Fluid Flow, 2019, 29, 1647-1662.	1.6	33
65	A Calerkin approach to analyze MHD flow of nanofluid along converging/diverging channels. Archive of Applied Mechanics, 2021, 91, 1907-1924.	1.2	33
66	Flow of water based alumina and copper nanoparticles along a moving surface with variable temperature. Journal of Molecular Liquids, 2017, 246, 354-362.	2.3	32
67	Numerical study of entropy generation in MHD water-based carbon nanotubes along an inclined permeable surface. European Physical Journal Plus, 2017, 132, 1.	1.2	32
68	MHD Boundary Layer Flow of a Nanofluid Passed through a Porous Shrinking Sheet with Thermal Radiation. Journal of Aerospace Engineering, 2015, 28, .	0.8	31
69	Heat flux performance in a porous medium embedded Maxwell fluid flow over a vertically stretched plate due to heat absorption. Journal of Nonlinear Science and Applications, 2016, 09, 2986-3001.	0.4	31
70	Entropy analysis in a cilia transport of nanofluid under the influence of magnetic field. Nuclear Engineering and Technology, 2017, 49, 1680-1688.	1.1	30
71	Dual nature study of convective heat transfer of nanofluid flow over a shrinking surface in a porous medium. International Communications in Heat and Mass Transfer, 2020, 114, 104583.	2.9	30
72	Investigation of dual solutions in flow of a non-Newtonian fluid with homogeneous–heterogeneous reactions: Critical points. European Journal of Mechanics, B/Fluids, 2018, 68, 30-38.	1.2	28

#	Article	IF	CITATIONS
73	Wavelet investigation of Soret and Dufour effects on stagnation point fluid flow in two dimensions with variable thermal conductivity and diffusivity. Physica Scripta, 2019, 94, 115219.	1.2	28
74	Thermal performance due to magnetohydrodynamics mixed convection flow in a triangular cavity with circular obstacle. Journal of Energy Storage, 2020, 31, 101702.	3.9	28
75	MHD mixed convection flow along a vertically heated sheet. International Journal of Hydrogen Energy, 2017, 42, 15925-15932.	3.8	28
76	Water-based squeezing flow in the presence of carbon nanotubes between two parallel disks. Thermal Science, 2016, 20, 1973-1981.	0.5	27
77	Impact of inclined Lorentz forces on tangent hyperbolic nanofluid flow with zero normal flux of nanoparticles at the stretching sheet. Neural Computing and Applications, 2018, 29, 805-814.	3.2	26
78	Buoyancy and metallic particle effects on an unsteady water-based fluid flow along a vertically rotating cone. European Physical Journal Plus, 2014, 129, 1.	1.2	25
79	Heat Transfer Analysis of MHD Water Functionalized Carbon Nanotube Flow over a Static/Moving Wedge. Journal of Nanomaterials, 2015, 2015, 1-13.	1.5	25
80	Innovative operational matrices based computational scheme for fractional diffusion problems with the Riesz derivative. European Physical Journal Plus, 2019, 134, 1.	1.2	25
81	Partially heated lid-driven flow in a hexagonal cavity with inner circular obstacle via FEM. International Communications in Heat and Mass Transfer, 2020, 117, 104732.	2.9	25
82	Water driven Cu nanoparticles between two concentric ducts with oscillatory pressure gradient. Journal of Molecular Liquids, 2016, 224, 322-332.	2.3	24
83	Heat transfer analysis of water based SWCNTs through parallel fins enclosed by square cavity. International Communications in Heat and Mass Transfer, 2020, 119, 104797.	2.9	23
84	Brownian motion and thermophoretic effects on non-Newtonian nanofluid flow via Crank–Nicolson scheme. Archive of Applied Mechanics, 2021, 91, 3303-3313.	1.2	23
85	Mixed convection analysis in a split lid-driven trapezoidal cavity having elliptic shaped obstacle. International Communications in Heat and Mass Transfer, 2021, 126, 105448.	2.9	23
86	Influence of metallic nanoparticles in water driven along a wavy circular cylinder. Chinese Journal of Physics, 2020, 63, 168-185.	2.0	22
87	A robust scheme based on novelâ€operational matrices for some classes of timeâ€fractional nonlinear problems arising in mechanics and mathematical physics. Numerical Methods for Partial Differential Equations, 2020, 36, 1566-1600.	2.0	22
88	A spectral approach to analyze the nonlinear oscillatory fractional-order differential equations. Chaos, Solitons and Fractals, 2021, 146, 110921.	2.5	22
89	Brownian motion and thermophoresis effects on unsteady stagnation point flow of Eyring–Powell nanofluid: a Galerkin approach. Communications in Theoretical Physics, 2020, 72, 125005.	1.1	22
90	Existence of dual solution for micro-polar fluid flow with convective boundary layer in the presence of thermal radiation and suction/injection effects. International Communications in Heat and Mass Transfer, 2022, 131, 105785.	2.9	21

#	Article	IF	CITATIONS
91	Operational-matrix-based algorithm for differential equations of fractional order with Dirichlet boundary conditions. European Physical Journal Plus, 2019, 134, 1.	1.2	20
92	Heat transfer analysis of Prandtl liquid nanofluid in the presence of homogeneous-heterogeneous reactions. Results in Physics, 2018, 10, 379-384.	2.0	19
93	Unsteady MHD Flow in a Porous Channel with Thermal Radiation and Heat Source/Sink. International Journal of Applied and Computational Mathematics, 2019, 5, 1.	0.9	19
94	Numerical design of a highly efficient microfluidic chip for blood plasma separation. Physics of Fluids, 2020, 32, .	1.6	19
95	Unsteady flow and heat transfer of tangentâ€hyperbolic fluid: Legendre waveletâ€based analysis. Heat Transfer, 2021, 50, 3079-3093.	1.7	19
96	Numerical study of non-Newtonian fluid flow over an exponentially stretching surface: an optimal HAM validation. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2017, 39, 1589-1596.	0.8	16
97	Heat transfer of ethylene glycol-Fe3O4 nanofluid enclosed by curved porous cavity including electric field. Physica A: Statistical Mechanics and Its Applications, 2020, 550, 123945.	1.2	16
98	Linearized stable spectral method to analyze twoâ€dimensional nonlinear evolutionary and reactionâ€diffusion models. Numerical Methods for Partial Differential Equations, 2020, , .	2.0	16
99	Finite element analysis of water-based Ferrofluid flow in a partially heated triangular cavity. International Journal of Numerical Methods for Heat and Fluid Flow, 2021, 31, 3132-3147.	1.6	16
100	MHD boundary layer flow over an unsteady shrinking sheet: analytical and numerical approach. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2015, 37, 1339-1346.	0.8	15
101	Numerical analysis of MHD flow and nanoparticle migration within a permeable space containing Non-equilibrium model. Physica A: Statistical Mechanics and Its Applications, 2020, 537, 122459.	1.2	14
102	Natural convection of CuO–water nanofluid filled in a partially heated corrugated cavity: KKL model approach. Communications in Theoretical Physics, 2020, 72, 085003.	1.1	14
103	Numerical simulation of lid driven flow in a curved corrugated porous cavity filled with CuO-water in the presence of heat generation/absorption. AEJ - Alexandria Engineering Journal, 2022, 61, 2749-2767.	3.4	13
104	Thermal treatment inside a partially heated triangular cavity filled with casson fluid with an inner cylindrical obstacle via FEM approach. European Physical Journal: Special Topics, 2022, 231, 2683-2694.	1.2	12
105	Non-linear Radiation Effects in Mixed Convection Stagnation Point Flow along a Vertically Stretching Surface. International Journal of Chemical Reactor Engineering, 2017, 15, .	0.6	11
106	Numerical study of streamwise and cross flow in the presence of heat and mass transfer. European Physical Journal Plus, 2017, 132, 1.	1.2	11
107	Flow and heat transfer due to partially heated moving lid in a trapezoidal cavity with different constraints at inner circular obstacle. International Communications in Heat and Mass Transfer, 2022, 135, 106111.	2.9	11
108	Thermophysical effects of water driven copper nanoparticles on MHD axisymmetric permeable shrinking sheet: Dual-nature study. European Physical Journal E, 2016, 39, 33.	0.7	10

#	Article	IF	CITATIONS
109	Viscous Dissipation Effects in Water Driven Carbon Nanotubes along a Stream Wise and Cross Flow Direction. International Journal of Chemical Reactor Engineering, 2017, 15, .	0.6	9
110	Nanoparticles Fraction on the Peristaltic Flow of Third Order Fluid. Journal of Computational and Theoretical Nanoscience, 2014, 11, 47-52.	0.4	8
111	Thermal energy performance of nanofluid flow and heat transfer based upon KKL correlation in a rotating vertical channel with permeable surface. Case Studies in Thermal Engineering, 2021, 28, 101447.	2.8	8
112	Impact of nonlinear radiative nanoparticles on an unsteady flow of a Williamson fluid toward a permeable convectively heated shrinking sheet. World Journal of Engineering, 2018, 15, 731-742.	1.0	7
113	Thermal performance of water driven flow of nanoparticle's shape due to double sided forced convection enclosed in a porous corrugated duct. Journal of Molecular Liquids, 2022, 347, 118046.	2.3	6
114	Peristaltic Flow of a Prandtl Nano Fluid in an Asymmetric Porous Channel: Numerical Solutions. Journal of Computational and Theoretical Nanoscience, 2014, 11, 1342-1348.	0.4	5
115	Refractivity variations and propagation at Ultra High Frequency. Results in Physics, 2017, 7, 3732-3737.	2.0	5
116	Thermal drift and force convection analysis of nanofluid due to partially heated triangular fins in a porous circular enclosure. Physica Scripta, 2021, 96, 065701.	1.2	5
117	Linearized novel operational matrices-based scheme for classes of nonlinear time-space fractional unsteady problems in 2D. Applied Numerical Mathematics, 2021, 162, 351-373.	1.2	5
118	Modified Chebyshev wavelets approach for mixed convection flow due to oblique stagnation point along a vertically moving surface with zero mass flux of nanoparticles. Journal of Molecular Liquids, 2021, 343, 117569.	2.3	5
119	Artificial neural network modeling of MHD slip-flow over a permeable stretching surface. Archive of Applied Mechanics, 2022, 92, 2179-2189.	1.2	5
120	Dual nature solutions of water-based carbon nanotubes along a shrinking surface in the presence of thermal radiation and viscous dissipation. International Communications in Heat and Mass Transfer, 2020, 119, 104938.	2.9	4
121	Neuronal dynamics and electrophysiology fractional model: A modified wavelet approach. Physica A: Statistical Mechanics and Its Applications, 2021, 570, 125805.	1.2	4
122	Thermal energy performance due to convection process of nanofluid in a porous medium due to split lid motion in a right triangular enclosure. Journal of Computational Design and Engineering, 2022, 9, 890-906.	1.5	4
123	Entropy generation and mixed convection of <i>CuO</i> –water near an oblique stagnation point: modified Chebyshev wavelets approach. Waves in Random and Complex Media, 0, , 1-24.	1.6	3
124	Homogeneousâ€heterogeneous chemical action and nonâ€Fourier flux theory effects in a flow with carbon nanotubes. Heat Transfer - Asian Research, 2019, 48, 4240-4261.	2.8	2
125	Response to comments on "MHD mixed convection flow along a vertically heated sheet―[Int J Hydrogen Energy 42 (2017) 15925–15932]. International Journal of Hydrogen Energy, 2017, 42, 26438.	3.8	1
126	Thermal strategy due to flame shape source in a carbon nanotubes-water enclosed by trapezoidal cavity. International Communications in Heat and Mass Transfer, 2022, 135, 106068.	2.9	1

#	Article	IF	CITATIONS
127	MATHEMATICAL STUDY OF CONVECTION HEAT TRANSFER UTILIZING SWCNT-WATER NANOFLUID INSIDE PARTIALLY HEATED HEXAGON CAVITY. , 2019, , .		0