G Niklas Norén

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4595413/publications.pdf

Version: 2024-02-01

218381 233125 2,335 56 26 45 citations h-index g-index papers 61 61 61 2067 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Shrinkage observed-to-expected ratios for robust and transparent large-scale pattern discovery. Statistical Methods in Medical Research, 2013, 22, 57-69.	0.7	195
2	Temporal pattern discovery in longitudinal electronic patient records. Data Mining and Knowledge Discovery, 2010, 20, 361-387.	2.4	148
3	Extending the methods used to screen the WHO drug safety database towards analysis of complex associations and improved accuracy for rare events. Statistics in Medicine, 2006, 25, 3740-3757.	0.8	145
4	vigiGrade: A Tool to Identify Well-Documented Individual Case Reports and Highlight Systematic Data Quality Issues. Drug Safety, 2014, 37, 65-77.	1.4	137
5	A statistical methodology for drug–drug interaction surveillance. Statistics in Medicine, 2008, 27, 3057-3070.	0.8	136
6	Duplicate detection in adverse drug reaction surveillance. Data Mining and Knowledge Discovery, 2007, 14, 305-328.	2.4	104
7	Suspected Adverse Drug Reactions Reported For Children Worldwide. Drug Safety, 2011, 34, 415-428.	1.4	104
8	Good Signal Detection Practices: Evidence from IMI PROTECT. Drug Safety, 2016, 39, 469-490.	1.4	93
9	Improved Statistical Signal Detection in Pharmacovigilance by Combining Multiple Strength-of-Evidence Aspects in vigiRank. Drug Safety, 2014, 37, 617-628.	1.4	83
10	Current Safety Concerns with Human Papillomavirus Vaccine: A Cluster Analysis of Reports in VigiBase®. Drug Safety, 2017, 40, 81-90.	1.4	80
11	Recommendations for the Use of Social Media in Pharmacovigilance: Lessons from IMI WEB-RADR. Drug Safety, 2019, 42, 1393-1407.	1.4	60
12	Pneumonia may be more frequent and have more fatal outcomes with clozapine than with other secondâ€generation antipsychotics. World Psychiatry, 2020, 19, 120-121.	4.8	60
13	Largeâ€scale regressionâ€based pattern discovery: The example of screening the WHO global drug safety database. Statistical Analysis and Data Mining, 2010, 3, 197-208.	1.4	53
14	Impact of Stratification on Adverse Drug Reaction Surveillance. Drug Safety, 2008, 31, 1035-1048.	1.4	52
15	Bridging Islands of Information to Establish an Integrated Knowledge Base of Drugs and Health Outcomes of Interest. Drug Safety, 2014, 37, 557-567.	1.4	49
16	Assessment of the Utility of Social Media for Broad-Ranging Statistical Signal Detection in Pharmacovigilance: Results from the WEB-RADR Project. Drug Safety, 2018, 41, 1355-1369.	1.4	47
17	Performance of Probabilistic Method to Detect Duplicate Individual Case Safety Reports. Drug Safety, 2014, 37, 249-258.	1.4	37
18	Zoo or Savannah? Choice of Training Ground for Evidence-Based Pharmacovigilance. Drug Safety, 2014, 37, 655-659.	1.4	36

#	Article	lF	Citations
19	Temporal pattern discovery for trends and transient effects. , 2008, , .		35
20	Earlier discovery of pregabalin's dependence potential might have been possible. European Journal of Clinical Pharmacology, 2011, 67, 319-320.	0.8	34
21	Empirical Performance of the Calibrated Self-Controlled Cohort Analysis Within Temporal Pattern Discovery: Lessons for Developing a Risk Identification and Analysis System. Drug Safety, 2013, 36, 107-121.	1.4	34
22	Modern methods of pharmacovigilance: detecting adverse effects of drugs. Clinical Medicine, 2009, 9, 486-489.	0.8	33
23	Performance of Stratified and Subgrouped Disproportionality Analyses in Spontaneous Databases. Drug Safety, 2016, 39, 355-364.	1.4	33
24	Quantitative Benefit-Risk Assessment Using Only Qualitative Information on Utilities. Medical Decision Making, 2012, 32, E1-E15.	1.2	31
25	A BAYESIAN RECURRENT NEURAL NETWORK FOR UNSUPERVISED PATTERN RECOGNITION IN LARGE INCOMPLETE DATA SETS. International Journal of Neural Systems, 2005, 15, 207-222.	3.2	29
26	Risk Factor Considerations in Statistical Signal Detection: Using Subgroup Disproportionality to Uncover Risk Groups for Adverse Drug Reactions in VigiBase. Drug Safety, 2020, 43, 999-1009.	1.4	29
27	A Decade of Data Mining and Still Counting. Drug Safety, 2010, 33, 527-534.	1.4	28
28	<scp>vigiRank</scp> for statistical signal detection in pharmacovigilance: First results from prospective realâ€world use. Pharmacoepidemiology and Drug Safety, 2017, 26, 1006-1010.	0.9	28
29	The Development and Evaluation of Triage Algorithms for Early Discovery of Adverse Drug Interactions. Drug Safety, 2013, 36, 371-388.	1.4	27
30	Data-Driven Identification of Adverse Event Reporting Patterns for Japan in VigiBase, the WHO Global Database of Individual Case Safety Reports. Drug Safety, 2019, 42, 1487-1498.	1.4	26
31	A hit-miss model for duplicate detection in the WHO drug safety database. , 2005, , .		24
32	Reporting Patterns Indicative of Adverse Drug Interactions. Drug Safety, 2011, 34, 253-266.	1.4	24
33	Outlier removal to uncover patterns in adverse drug reaction surveillance – a simple unmasking strategy. Pharmacoepidemiology and Drug Safety, 2013, 22, 1119-1129.	0.9	22
34	Robust discovery of local patterns. , 2012, , .		21
35	Safety surveillance of longitudinal databases: methodological considerations. Pharmacoepidemiology and Drug Safety, 2011, 20, 714-717.	0.9	20
36	Structured Assessment for Prospective Identification of Safety Signals in Electronic Medical Records: Evaluation in the Health Improvement Network. Drug Safety, 2015, 38, 87-100.	1.4	18

#	Article	IF	CITATIONS
37	Using VigiBase to Identify Substandard Medicines: Detection Capacity and Key Prerequisites. Drug Safety, 2015, 38, 373-382.	1.4	18
38	Logistic Regression in Signal Detection: Another Piece Added to the Puzzle. Clinical Pharmacology and Therapeutics, 2013, 94, 312-312.	2.3	16
39	A method for data-driven exploration to pinpoint key features in medical data and facilitate expert review. Pharmacoepidemiology and Drug Safety, 2017, 26, 1256-1265.	0.9	15
40	Interstitial Lung Disease as an Adverse Drug Reaction in Japan: Exploration of Regulatory Actions as a Basis for High Reporting. Drug Safety, 2020, 43, 1121-1131.	1.4	14
41	Pharmacovigilance for a Revolving World: Prospects of Patient-Generated Data on the Internet. Drug Safety, 2014, 37, 761-764.	1.4	13
42	Cheminformatics-aided pharmacovigilance: application to Stevens-Johnson Syndrome. Journal of the American Medical Informatics Association: JAMIA, 2016, 23, 968-978.	2.2	13
43	A Feasibility Study of Drug–Drug Interaction Signal Detection in Regular Pharmacovigilance. Drug Safety, 2020, 43, 775-785.	1.4	13
44	Stratification for Spontaneous Report Databases. Drug Safety, 2008, 31, 1145-1147.	1.4	11
45	Safety surveillance of longitudinal databases: results on realâ€world data. Pharmacoepidemiology and Drug Safety, 2012, 21, 673-675.	0.9	10
46	Post-Marketing Safety Profile of Vortioxetine Using a Cluster Analysis and a Disproportionality Analysis of Global Adverse Event Reports. Drug Safety, 2022, 45, 145-153.	1.4	9
47	Key Elements in Adverse Drug Interaction Safety Signals. Drug Safety, 2013, 36, 63-70.	1.4	7
48	The Impact of Duration of Treatment on Reported Time-to-Onset in Spontaneous Reporting Systems for Pharmacovigilance. PLoS ONE, 2013, 8, e68938.	1.1	7
49	Consensus clustering for case series identification and adverse event profiles in pharmacovigilance. Artificial Intelligence in Medicine, 2021, 122, 102199.	3.8	7
50	Timeâ€ŧoâ€onset in spontaneous reports: the possibility to detect the unexpected. Pharmacoepidemiology and Drug Safety, 2013, 22, 556-557.	0.9	5
51	Case Based Imprecision Estimates for Bayes Classifiers with the Bayesian Bootstrap. Machine Learning, 2005, 58, 79-94.	3.4	4
52	Communicating Adverse Drug Reaction Insights Through Patient Organizations: Experiences from a Pilot Study in the Netherlands. Drug Safety, 2020, 43, 745-749.	1.4	4
53	Computing limits on medicine risks based on collections of individual case reports. Theoretical Biology and Medical Modelling, 2014, 11, 15.	2.1	3
54	Authors' Reply to Harpaz et al. Comment on: "Zoo or Savannah? Choice of Training Ground for Evidence-Based Pharmacovigilance― Drug Safety, 2015, 38, 115-116.	1.4	3

#		Article	IF	CITATIONS
58	5	The Power of the Case NarrativeÂ- Can it be Brought to Bear on Duplicate Detection?. Drug Safety, 2017, 40, 543-546.	1.4	3
56	6	Data Mining in Pharmacovigilance: A View from the Uppsala Monitoring Centre., 0,, 265-275.		0