Leonardo Chiappisi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4594982/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A structural comparison of halloysite nanotubes of different origin by Small-Angle Neutron Scattering (SANS) and Electric Birefringence. Applied Clay Science, 2018, 160, 71-80.	2.6	164
2	Complexes of oppositely charged polyelectrolytes and surfactants – recent developments in the field of biologically derived polyelectrolytes. Soft Matter, 2013, 9, 3896.	1.2	140
3	Structural water as an essential comonomer in supramolecular polymerization. Science Advances, 2017, 3, eaao0900.	4.7	139
4	Chitosan-based smart hybrid materials: a physico-chemical perspective. Journal of Materials Chemistry B, 2021, 9, 594-611.	2.9	103
5	Co-assembly in chitosan–surfactant mixtures: thermodynamics, structures, interfacial properties and applications. Advances in Colloid and Interface Science, 2015, 220, 92-107.	7.0	87
6	Probing the Microstructure of Nonionic Microemulsions with Ethyl Oleate by Viscosity, ROESY, DLS, SANS, and Cyclic Voltammetry. Langmuir, 2012, 28, 10640-10652.	1.6	56
7	Micellar enhanced ultrafiltration (MEUF) of metal cations with oleylethoxycarboxylate. Journal of Membrane Science, 2015, 478, 140-147.	4.1	50
8	Fundamentals and Applications of Polymer Brushes in Air. ACS Applied Polymer Materials, 2022, 4, 3062-3087.	2.0	44
9	Chitosan/Alkylethoxy Carboxylates: A Surprising Variety of Structures. Langmuir, 2014, 30, 1778-1787.	1.6	42
10	Theoretical study on the adsorption of pyridine derivatives on graphene. Chemical Physics Letters, 2011, 510, 220-223.	1.2	39
11	Polyoxyethylene alkyl ether carboxylic acids: An overview of a neglected class of surfactants with multiresponsive properties. Advances in Colloid and Interface Science, 2017, 250, 79-94.	7.0	39
12	Enzymatically Cross-Linked Hyperbranched Polyglycerol Hydrogels as Scaffolds for Living Cells. Biomacromolecules, 2014, 15, 3881-3890.	2.6	38
13	A journey through the phase diagram of a pharmaceutically relevant microemulsion system. Journal of Colloid and Interface Science, 2016, 473, 52-59.	5.0	38
14	Toward Bioderived Intelligent Nanocarriers for Controlled Pollutant Recovery and pH-Sensitive Binding. ACS Applied Materials & amp; Interfaces, 2015, 7, 6139-6145.	4.0	37
15	From Crab Shells to Smart Systems: Chitosan–Alkylethoxy Carboxylate Complexes. Langmuir, 2014, 30, 10608-10616.	1.6	33
16	Structure-related differences in the temperature-regulated fluorescence response of LCST type polymers. Journal of Materials Chemistry C, 2013, 1, 6603.	2.7	31
17	Interaction of the signaling state analog and the apoprotein form of the orange carotenoid protein with the fluorescence recovery protein. Photosynthesis Research, 2018, 135, 125-139.	1.6	31
18	Cyclodextrin/surfactant inclusion complexes: An integrated view of their thermodynamic and structural properties. Advances in Colloid and Interface Science, 2021, 289, 102375	7.0	30

#	Article	IF	CITATIONS
19	Ion Selectivity in Nonpolymeric Thermosensitive Systems Induced by Waterâ€Attenuated Supramolecular Recognition. Chemistry - A European Journal, 2018, 24, 3854-3861.	1.7	28
20	Oleylethoxycarboxylate – An efficient surfactant for copper extraction and surfactant recycling via micellar enhanced ultrafiltration. Journal of Colloid and Interface Science, 2014, 421, 184-190.	5.0	26
21	Mimicking of Chondrocyte Microenvironment Using In Situ Forming Dendritic Polyglycerol Sulfateâ€Based Synthetic Polyanionic Hydrogels. Macromolecular Bioscience, 2016, 16, 580-590.	2.1	26
22	An improved method for analyzing isothermal titration calorimetry data from oppositely charged surfactant polyelectrolyte mixtures. Journal of Chemical Thermodynamics, 2014, 68, 48-52.	1.0	25
23	Catanionic surfactant systems—thermodynamic and structural conditions revisited. Colloid and Polymer Science, 2015, 293, 3131-3143.	1.0	23
24	Micellar enhanced ultrafiltration (MEUF) of methylene blue with carboxylate surfactants. Separation and Purification Technology, 2018, 199, 20-26.	3.9	19
25	Formation and Growth of Mesoglobules in Aqueous Poly(<i>N</i> -isopropylacrylamide) Solutions Revealed with Kinetic Small-Angle Neutron Scattering and Fast Pressure Jumps. ACS Macro Letters, 2018, 7, 1155-1160.	2.3	19
26	Precipitating polyelectrolyte–surfactant systems by admixing a nonionic surfactant – a case of cononsurfactancy. Soft Matter, 2017, 13, 4988-4996.	1.2	18
27	Kinetics of Mesoglobule Formation and Growth in Aqueous Poly(<i>N</i> -isopropylacrylamide) Solutions: Pressure Jumps at Low and at High Pressure. Macromolecules, 2019, 52, 6416-6427.	2.2	18
28	Structural control of polyelectrolyte/microemulsion droplet complexes (PEMECs) with different polyacrylates. Chemical Science, 2019, 10, 385-397.	3.7	15
29	A Small-Angle Neutron Scattering Environment for In-Situ Observation of Chemical Processes. Scientific Reports, 2018, 8, 7299.	1.6	14
30	Temperatureâ€Regulated Fluorescence Characteristics of Supramolecular Assemblies Formed By a Smart Polymer and a Conjugated Polyelectrolyte. Macromolecular Chemistry and Physics, 2013, 214, 435-445.	1.1	13
31	Neutralisation rate controls the self-assembly of pH-sensitive surfactants. Soft Matter, 2019, 15, 8611-8620.	1.2	13
32	Looking into Limoncello: The Structure of the Italian Liquor Revealed by Small-Angle Neutron Scattering. ACS Omega, 2018, 3, 15407-15415.	1.6	12
33	Aggregation behavior of surfactants with cationic and anionic dendronic head groups. Journal of Colloid and Interface Science, 2019, 534, 430-439.	5.0	12
34	PyDSC: a simple tool to treat differential scanning calorimetry data. Journal of Thermal Analysis and Calorimetry, 2021, 145, 403-409.	2.0	12
35	Quantitative Description of Temperature Induced Self-Aggregation Thermograms Determined by Differential Scanning Calorimetry. Langmuir, 2012, 28, 17609-17616.	1.6	11
36	Form factor of cylindrical superstructures composed of globular particles. Journal of Applied Crystallography, 2014, 47, 827-834.	1.9	11

LEONARDO CHIAPPISI

#	Article	IF	CITATIONS
37	One-step procedure for the preparation of functional polysaccharide/fatty acid multilayered coatings. Communications Chemistry, 2019, 2, .	2.0	10
38	Pressure Dependence of the Cononsolvency Effect in Aqueous Poly(<i>N</i> -isopropylacrylamide) Solutions: A SANS Study. Macromolecules, 2020, 53, 3946-3955.	2.2	10
39	Organized Hybrid Molecular Films from Natural Phospholipids and Synthetic Block Copolymers: A Physicochemical Investigation. Langmuir, 2020, 36, 10941-10951.	1.6	9
40	Effect of the supramolecular interactions on the nanostructure of halloysite/biopolymer hybrids: a comprehensive study by SANS, fluorescence correlation spectroscopy and electric birefringence. Physical Chemistry Chemical Physics, 2020, 22, 8193-8202.	1.3	9
41	Temperature-Regulated Fluorescence and Association of an Oligo(ethyleneglycol)methacrylate-Based Copolymer with a Conjugated Polyelectrolyte—The Effect of Solution Ionic Strength. Journal of Physical Chemistry B, 2013, 117, 14576-14587.	1.2	7
42	PolyWhips: Directional Particle Transport by Gradientâ€Directed Growth and Stiffening of Supramolecular Assemblies. Advanced Materials, 2017, 29, 1604430.	11.1	5
43	On the effect of the nature of counterions on the self-assembly of polyoxyethylene alkyl ether carboxylic acids. Soft Matter, 2020, 16, 7137-7143.	1.2	5
44	Effect of Polymer Length on the Adsorption onto Aluminogermanate Imogolite Nanotubes. Langmuir, 2021, 37, 9858-9864.	1.6	4
45	Membrane stiffening in Chitosan mediated multilamellar vesicles of alkyl ether carboxylates. Journal of Colloid and Interface Science, 2022, 627, 160-167.	5.0	3
46	Nanoscale disintegration kinetics of mesoglobules in aqueous poly(<i>N</i> -isopropylacrylamide) solutions revealed by small-angle neutron scattering and pressure jumps. Nanoscale, 2021, 13, 13421-13426.	2.8	2
47	Structural characterization of clay systems by small-angle scattering. , 2020, , 37-65.		1
48	Investigations in the Stranski-Laboratorium of the TU Berlin – Physical Chemistry of Colloidal Systems – Going Towards Complexity and Functionality. Tenside, Surfactants, Detergents, 2012, 49, 256-265.	0.5	0