Tianwei Tan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/459421/publications.pdf

Version: 2024-02-01

30 papers	1,535 citations	471509 17 h-index	454955 30 g-index
			0
30 all docs	30 docs citations	30 times ranked	2188 citing authors

#	Article	IF	CITATIONS
1	Selective conversion of acetone to mesitylene over tantalum phosphate catalysts. Chemical Communications, 2022, 58, 2862-2865.	4.1	9
2	Efficient production of chemicals from microorganism by metabolic engineering and synthetic biology. Chinese Journal of Chemical Engineering, 2021, 30, 14-28.	3 . 5	9
3	Synergistic enhancement of electrocatalytic CO2 reduction to C2 oxygenates at nitrogen-doped nanodiamonds/Cu interface. Nature Nanotechnology, 2020, 15, 131-137.	31.5	169
4	Low-Temperature Dehydration of Ethanol to Ethylene over Cu–Zeolite Catalysts Synthesized from Cu–Tetraethylenepentamine. Industrial & Engineering Chemistry Research, 2020, 59, 17300-17306.	3.7	14
5	Third-generation biorefineries as the means to produce fuels and chemicals from CO2. Nature Catalysis, 2020, 3, 274-288.	34.4	245
6	<i>In situ</i> bottom–up growth of metal–organic frameworks in a crosslinked poly(ethylene oxide) layer with ultrahigh loading and superior uniform distribution. Journal of Materials Chemistry A, 2019, 7, 20293-20301.	10.3	28
7	Hierarchical Micro―and Mesoporous Znâ€Based Metal–Organic Frameworks Templated by Hydrogels: Their Use for Enzyme Immobilization and Catalysis of Knoevenagel Reaction. Small, 2019, 15, e1902927.	10.0	108
8	<i>In situ</i> synthesis of poly(ether ester) <i>via</i> direct polycondensation of terephthalic acid and 1,3-propanediol with sulfonic acids as catalysts. Polymer Chemistry, 2019, 10, 3629-3638.	3.9	8
9	Metabolite-based mutualism enhances hydrogen production in a two-species microbial consortium. Communications Biology, 2019, 2, 82.	4.4	32
10	Direct Utilization of Non-pretreated Hydrolytic Liquid of Dried Distiller's Grains with Solubles for Bio-Ethanol by Rhizopus arrhizus RH 7-13-9#. Applied Biochemistry and Biotechnology, 2018, 186, 590-596.	2.9	3
11	Structural basis of ubiquitin modification by the Legionella effector SdeA. Nature, 2018, 557, 674-678.	27.8	69
12	Genetic manipulation of Escherichia coli central carbon metabolism for efficient production of fumaric acid. Bioresource Technology, 2018, 270, 96-102.	9.6	24
13	Co-fermentation of a mixture of glucose and xylose to fumaric acid by Rhizopus arrhizus RH 7 - 13-9#. Bioresource Technology, 2017, 233, 30-33.	9.6	32
14	Preparation of chitosan-TiO2 composite film with efficient antimicrobial activities under visible light for food packaging applications. Carbohydrate Polymers, 2017, 169, 101-107.	10.2	292
15	Preparation of hydrolytic liquid from dried distiller's grains with solubles and fumaric acid fermentation by Rhizopus arrhizus RH 7-13. Journal of Environmental Management, 2017, 201, 172-176.	7.8	14
16	Production of fumaric acid by immobilized Rhizopus arrhizus RH 7-13-9# on loofah fiber in a stirred-tank reactor. Bioresource Technology, 2017, 244, 929-933.	9.6	26
17	Generalized Born and Explicit Solvent Models for Free Energy Calculations in Organic Solvents: Cyclodextrin Dimerization. Journal of Chemical Theory and Computation, 2015, 11, 5103-5113.	5.3	31
18	Enhancing trimethylolpropane esters synthesis through lipase immobilized on surface hydrophobic modified support and appropriate substrate feeding methods. Enzyme and Microbial Technology, 2014, 58-59, 60-67.	3. 2	17

#	Article	IF	CITATION
19	Cooperative Binding of Cyclodextrin Dimers to Isoflavone Analogues Elucidated by Free Energy Calculations. Journal of Physical Chemistry C, 2014, 118, 7163-7173.	3.1	35
20	pH-sensitive IPN hydrogel based on poly (aspartic acid) and poly (vinyl alcohol) for controlled release. Polymer Bulletin, 2013, 70, 2815-2827.	3.3	14
21	Quantification of Solvent Contribution to the Stability of Noncovalent Complexes. Journal of Chemical Theory and Computation, 2013, 9, 4542-4551.	5.3	37
22	Live Steam-Pretreatment and Anaerobic Digestion of Waste Activated Sludge. Environmental Engineering Science, 2013, 30, 546-554.	1.6	3
23	Antibacterial and anti-mildew behavior of chitosan/nano-TiO2 composite emulsion. Korean Journal of Chemical Engineering, 2008, 25, 1434-1438.	2.7	43
24	Optimization of the preparation of a poly(aspartic acid) superabsorbent resin with response surface methodology. Journal of Applied Polymer Science, 2006, 102, 2616-2622.	2.6	5
25	Double-functional characteristics of a surface molecular imprinted adsorbent with immobilization of nano-TiO2. Journal of Chemical Technology and Biotechnology, 2006, 81, 1797-1802.	3.2	11
26	Poly(aspartic acid) Super-Absorbent Resin Produced by Chemical Crosslinking and Physical Freeze/Thawing. Macromolecular Chemistry and Physics, 2006, 207, 1297-1305.	2.2	13
27	Enzymatic production of alkyl esters through alcoholysis: A critical evaluation of lipases and alcohols. JAOCS, Journal of the American Oil Chemists' Society, 2005, 82, 341-347.	1.9	93
28	Lipase-catalyzed esterification of lactic acid with straight-chain alcohols. JAOCS, Journal of the American Oil Chemists' Society, 2005, 82, 881-885.	1.9	10
29	Biosorption of Metal Ions with Penicillium chrysogenum. Applied Biochemistry and Biotechnology, 2003, 104, 119-128.	2.9	73
30	Enzymatic production of fatty acid alkyl esters with a lipase preparation from Candida sp. 99-125.	1.5	68