Serenella M Pupa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4594194/publications.pdf

Version: 2024-02-01

74 papers 3,815 citations

30 h-index 61 g-index

79 all docs

79 docs citations

79 times ranked

5488 citing authors

#	Article	IF	CITATIONS
1	BCL6 and the Notch pathway: a signaling axis leading to a novel druggable biotarget in triple negative breast cancer. Cellular Oncology (Dordrecht), 2022, 45, 257-274.	2.1	9
2	T Cells Expressing Receptor Recombination/Revision Machinery Are Detected in the Tumor Microenvironment and Expanded in Genomically Over-unstable Models. Cancer Immunology Research, 2021, 9, 825-837.	1.6	6
3	Fifteen-year follow-up of relapsed indolent non-Hodgkin lymphoma patients vaccinated with tumor-loaded dendritic cells., 2021, 9, e002240.		4
4	HER2 Signaling and Breast Cancer Stem Cells: The Bridge behind HER2-Positive Breast Cancer Aggressiveness and Therapy Refractoriness. Cancers, 2021, 13, 4778.	1.7	27
5	Anticancer innovative therapy: Highlights from the ninth annual meeting. Cytokine and Growth Factor Reviews, 2020, 51, 1-9.	3.2	O
6	Inhibition of the Wnt Signalling Pathway: An Avenue to Control Breast Cancer Aggressiveness. International Journal of Molecular Sciences, 2020, 21, 9069.	1.8	16
7	Cancer Stem Cells: Devil or Saviorâ€"Looking behind the Scenes of Immunotherapy Failure. Cells, 2020, 9, 555.	1.8	26
8	Abstract P3-02-01: Fatty acid uptake as a potentially new resistance mechanism to anti-HER2 treatments in HER2-positive breast cancer. , 2020, , .		0
9	Intratumor lactate levels reflect HER2 addiction status in HER2â€positive breast cancer . Journal of Cellular Physiology, 2019, 234, 1768-1779.	2.0	31
10	Phenethyl isothiocyanate hampers growth and progression of HER2-positive breast and ovarian carcinoma by targeting their stem cell compartment. Cellular Oncology (Dordrecht), 2019, 42, 815-828.	2.1	11
11	The d16HER2 Splice Variant: A Friend or Foe of HER2-Positive Cancers?. Cancers, 2019, 11, 902.	1.7	21
12	WNT signaling modulates PD-L1 expression in the stem cell compartment of triple-negative breast cancer. Oncogene, 2019, 38, 4047-4060.	2.6	137
13	The landscape of d16HER2 splice variant expression across HER2-positive cancers. Scientific Reports, 2019, 9, 3545.	1.6	22
14	Impact of systemic and tumor lipid metabolism on everolimus efficacy in advanced pancreatic neuroendocrine tumors (pNETs). International Journal of Cancer, 2019, 144, 1704-1712.	2.3	20
15	Vascular endothelial growth factor A (VEGF-A) amplification and long-term response to ramucirumab (ram) in metastatic gastric cancer (mGC): The VERA study Journal of Clinical Oncology, 2019, 37, 3143-3143.	0.8	3
16	RET fusions in a small subset of advanced colorectal cancers at risk of being neglected. Annals of Oncology, 2018, 29, 1394-1401.	0.6	72
17	Biomarkers of Primary Resistance to Trastuzumab in HER2-Positive Metastatic Gastric Cancer Patients: the AMNESIA Case-Control Study. Clinical Cancer Research, 2018, 24, 1082-1089.	3.2	76
18	Abstract A068: Targeting glioblastoma stem cells through a MET inhibitor., 2018,,.		0

#	Article	IF	CITATIONS
19	Pathobiological implications of the d16HER2 splice variant for stemness and aggressiveness of HER2-positive breast cancer. Oncogene, 2017, 36, 1721-1732.	2.6	36
20	HER2 isoforms co-expression differently tunes mammary tumor phenotypes affecting onset, vasculature and therapeutic response. Oncotarget, 2017, 8, 54444-54458.	0.8	19
21	Abstract 5428: Lactate production as a potential marker of HER2-addiction and Trastuzumab susceptibility., 2017,,.		0
22	Synergistic Activation upon MET and ALK Coamplification Sustains Targeted Therapy in Sarcomatoid Carcinoma, a Deadly Subtype of Lung Cancer. Journal of Thoracic Oncology, 2016, 11, 718-728.	0.5	22
23	Abstract 1200: HER-2 isoform interaction in mammary carcinoma onset and progression. , 2016, , .		0
24	Abstract 3826: Phenethyl isothiocyanate hampers growth and progression of HER2-positive breast cancers. , 2016, , .		0
25	HSPH1 inhibition downregulates Bcl-6 and c-Myc and hampers the growth of human aggressive B-cell non-Hodgkin lymphoma. Blood, 2015, 125, 1768-1771.	0.6	40
26	Abstract 2314: d16HER2 splice variant regulates the activity of HER2-positive breast cancer-initiating cells. , 2015, , .		0
27	Abstract 5015: Tumor dependence on HER2 signaling as a player in immune infiltration required for trastuzumab activity. , 2015 , , .		0
28	Activated d16HER2 Homodimers and SRC Kinase Mediate Optimal Efficacy for Trastuzumab. Cancer Research, 2014, 74, 6248-6259.	0.4	63
29	Abstract 2774: Coexpression of Delta16 isoform and full-length HER-2 in F1 hybrid transgenic mice: effects on tumor growth and malignancy. , 2014, , .		0
30	Abstract 2637: Role of d16HER2 splice variant in HER2-positive breast cancer. , 2014, , .		0
31	Identification of Relevant Conformational Epitopes on the HER2 Oncoprotein by Using Large Fragment Phage Display (LFPD). PLoS ONE, 2013, 8, e58358.	1.1	7
32	Activity and resistance of trastuzumab according to different clinical settings. Cancer Treatment Reviews, 2012, 38, 212-217.	3.4	31
33	Potential role of HER2â€overexpressing exosomes in countering trastuzumabâ€based therapy. Journal of Cellular Physiology, 2012, 227, 658-667.	2.0	410
34	Abstract 916: Role of delta 16 HER2 splice variant in HER2-driven tumor progression and response to targeted therapy. , 2012, , .		0
35	HSP105 Inhibition Counteracts Key Oncogenic Pathways and Hampers the Growth of Human Aggressive B-Cell Non-Hodgkin Lymphoma. Blood, 2012, 120, 1562-1562.	0.6	1
36	Serological identification of HSP105 as a novel non-Hodgkin lymphoma therapeutic target. Blood, 2011, 118, 4421-4430.	0.6	30

#	Article	IF	CITATIONS
37	Increased overall survival independent of RECIST response in metastatic breast cancer patients continuing trastuzumab treatment: evidence from a retrospective study. Breast Cancer Research and Treatment, 2011, 128, 147-154.	1.1	23
38	The HER2 World: Better Treatment Selection for Better Outcome. Journal of the National Cancer Institute Monographs, 2011, 2011, 82-85.	0.9	7
39	The Human Splice Variant Δ16HER2 Induces Rapid Tumor Onset in a Reporter Transgenic Mouse. PLoS ONE, 2011, 6, e18727.	1.1	70
40	Do pre-diagnostic drinking habits influence breast cancer survival?. Tumori, 2011, 97, 142-8.	0.6	16
41	Shed HER2 extracellular domain in HER2â€mediated tumor growth and in trastuzumab susceptibility. Journal of Cellular Physiology, 2010, 225, 256-265.	2.0	28
42	Improved Clinical Outcome in Indolent B-Cell Lymphoma Patients Vaccinated with Autologous Tumor Cells Experiencing Immunogenic Death. Cancer Research, 2010, 70, 9062-9072.	0.4	126
43	HER2 as a target for breast cancer therapy. Expert Opinion on Biological Therapy, 2010, 10, 711-724.	1.4	78
44	Vaccination with autologous tumor-loaded dendritic cells induces clinical and immunologic responses in indolent B-cell lymphoma patients with relapsed and measurable disease: a pilot study. Blood, 2009, 113, 18-27.	0.6	99
45	Regulation of Breast Cancer Response to Chemotherapy by Fibulin-1. Cancer Research, 2007, 67, 4271-4277.	0.4	59
46	Role of exon-16-deleted HER2 in breast carcinomas. Endocrine-Related Cancer, 2006, 13, 221-232.	1.6	112
47	SEL1L a multifaceted protein playing a role in tumor progression. Journal of Cellular Physiology, 2006, 208, 23-38.	2.0	36
48	HER-2: A biomarker at the crossroads of breast cancer immunotherapy and molecular medicine. Journal of Cellular Physiology, 2005, 205, 10-18.	2.0	30
49	The 67 kDa laminin receptor increases tumor aggressiveness by remodeling laminin-1. Endocrine-Related Cancer, 2005, 12, 393-406.	1.6	69
50	Apoptosis Induction by Trastuzumab: Possible Role of the Core Biopsy Intervention. Journal of Clinical Oncology, 2005, 23, 7238-7240.	0.8	8
51	Inhibition of mammary carcinoma development in HER-2/neu transgenic mice through induction of autoimmunity by xenogeneic DNA vaccination. Cancer Research, 2005, 65, 1071-8.	0.4	33
52	Electroporated DNA Vaccine Clears Away Multifocal Mammary Carcinomas in Her-2/neu Transgenic Mice. Cancer Research, 2004, 64, 2858-2864.	0.4	143
53	Immunological and pathobiological roles of fibulin-1 in breast cancer. Oncogene, 2004, 23, 2153-2160.	2.6	45
54	Oncogenic protein tyrosine kinases. Cellular and Molecular Life Sciences, 2004, 61, 2965-2978.	2.4	125

#	Article	IF	CITATIONS
55	Monoclonal antibody to fibulin-1 generated by genetic immunization. Journal of Cellular Biochemistry, 2003, 89, 647-652.	1.2	6
56	Re: Italian Randomized Trial Among Women With Hysterectomy: Tamoxifen and Hormone-Dependent Breast Cancer in High-Risk Women. Journal of the National Cancer Institute, 2003, 95, 917-918.	3.0	1
57	Humoral immune response for early diagnosis of breast carcinoma. Annals of Oncology, 2002, 13, 483.	0.6	5
58	New insights into the role of extracellular matrix during tumor onset and progression. Journal of Cellular Physiology, 2002, 192, 259-267.	2.0	279
59	Identification of Breast Cancer-Restricted Antigens by Antibody Screening of SKBR3 cDNA Library Using a Preselected Patient's Serum. Breast Cancer Research and Treatment, 2002, 73, 245-256.	1.1	59
60	Prevention of spontaneous neu-expressing mammary tumor development in mice transgenic for rat proto-neu by DNA vaccination. Gene Therapy, 2001, 8, 75-79.	2.3	61
61	Combined Allogeneic Tumor Cell Vaccination and Systemic Interleukin 12 Prevents Mammary Carcinogenesis in HER-2/neu Transgenic Mice. Journal of Experimental Medicine, 2001, 194, 1195-1206.	4.2	218
62	Role of HER2 gene overexpression in breast carcinoma. Journal of Cellular Physiology, 2000, 182, 150-162.	2.0	258
63	p185neu protein is required for tumor and anchorage-independent growth, not for cell proliferation of transgenic mammary carcinoma. International Journal of Cancer, 2000, 87, 186-194.	2.3	75
64	Murine granulocytes control human tumor growth in SCID mice. International Journal of Cancer, 2000, 87, 569-573.	2.3	24
65	p185neu protein is required for tumor and anchorage-independent growth, not for cell proliferation of transgenic mammary carcinoma., 2000, 87, 186.		3
66	Ectopic expression of pRb2/p130 suppresses the tumorigenicity of the c-erbB-2-overexpressing SKOV3 tumor cell line. Oncogene, 1999, 18, 651-656.	2.6	19
67	Killing of Laminin Receptor-Positive Human Lung Cancers by Tumor-Infiltrating Lymphocytes Bearing $\hat{l}^3\hat{l}'$ + T-Cell Receptors. Journal of the National Cancer Institute, 1996, 88, 436-441.	3.0	60
68	Anin vivo model to compare human leukocyte infiltration in carcinoma xenografts producing different chemokines. International Journal of Cancer, 1995, 62, 572-578.	2.3	29
69	Distinct pattern of HSP72 and monomeric laminin receptor expression in human lung cancers infiltrated by \hat{I}^3/\hat{I}^7 I lymphocytes. International Journal of Cancer, 1994, 57, 486-490.	2.3	34
70	Curability of advanced Burkitt's lymphoma in children by intensive short-term chemotherapy. European Journal of Cancer, 1993, 29, 692-698.	1.3	15
71	Anti-ovarian carcinoma anti-T3 heteroconjugates or hybrid antibodies induce tumor cell lysis by cytotoxic T-cells. International Journal of Cancer, 1988, 41, 18-21.	2.3	17
72	Activation of mononuclear cells to be used for hybrid monoclonal antibody-induced lysis of human ovarian carcinoma cells. International Journal of Cancer, 1988, 42, 455-459.	2.3	41

#	Article	IF	CITATIONS
73	Human ovarian carcinoma lysis by cytotoxic t cells targeted by bispecific monoclonal antibodies: Analysis of the antibody components. International Journal of Cancer, 1988, 41, 609-615.	2.3	70
74	Characterization of human ovarian carcinoma-associated antigens defined by novel monoclonal antibodies with tumor-restricted specificity. International Journal of Cancer, 1987, 39, 297-303.	2.3	284