Evie L Papadopoulou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/459407/publications.pdf

Version: 2024-02-01

43 papers

1,123 citations

430874 18 h-index 395702 33 g-index

44 all docs

44 docs citations

times ranked

44

1820 citing authors

#	Article	IF	CITATIONS
1	Reversible Photoinduced Wettability Transition of Hierarchical ZnO Structures. Journal of Physical Chemistry C, 2009, 113, 2891-2895.	3.1	124
2	Strain-responsive mercerized conductive cotton fabrics based on PEDOT:PSS/graphene. Materials and Design, 2017, 135, 213-222.	7.0	106
3	Fabrication of Visible Light-Induced Antibacterial and Self-Cleaning Cotton Fabrics Using Manganese Doped TiO ₂ Nanoparticles. ACS Applied Bio Materials, 2018, 1, 1154-1164.	4.6	72
4	Sustainable Active Food Packaging from Poly(lactic acid) and Cocoa Bean Shells. ACS Applied Materials & Lamp; Interfaces, 2019, 11, 31317-31327.	8.0	71
5	Undoped and Al-doped ZnO films with tuned properties grown by pulsed laser deposition. Thin Solid Films, 2008, 516, 8141-8145.	1.8	64
6	Reversible wettability of ZnO nanostructured thin films prepared by pulsed laser deposition. Thin Solid Films, 2009, 518, 1267-1270.	1.8	62
7	Graphene and polytetrafluoroethylene synergistically improve the tribological properties and adhesion of nylon 66 coatings. Carbon, 2017, 123, 26-33.	10.3	53
8	Nylon 6,6/graphene nanoplatelet composite films obtained from a new solvent. RSC Advances, 2016, 6, 6823-6831.	3.6	52
9	Magnetic Aging inBi2Sr2CaCu2O8Displaying the Paramagnetic Meissner Effect. Physical Review Letters, 1999, 82, 173-176.	7.8	47
10	Silicon Scaffolds Promoting Three-Dimensional Neuronal Web of Cytoplasmic Processes. Tissue Engineering - Part C: Methods, 2010, 16, 497-502.	2.1	47
11	Structural and morphological characterization of TiO2 nanostructured films grown by nanosecond pulsed laser deposition. Applied Surface Science, 2009, 255, 5267-5270.	6.1	39
12	Self-Cleaning Organic/Inorganic Photo-Sensors. ACS Applied Materials & Samp; Interfaces, 2013, 5, 7139-7145.	8.0	33
13	Antibacterial bioelastomers with sustained povidone-iodine release. Chemical Engineering Journal, 2018, 347, 19-26.	12.7	32
14	Zwitterionic Nanofibers of Super-Glue for Transparent and Biocompatible Multi-Purpose Coatings. Scientific Reports, 2015, 5, 14019.	3.3	28
15	Ceria/Gold Nanoparticles <i>in Situ</i> Synthesized on Polymeric Membranes with Enhanced Photocatalytic and Radical Scavenging Activity. ACS Applied Nano Materials, 2018, 1, 5601-5611.	5.0	27
16	Green Composites of Poly(3-hydroxybutyrate) Containing Graphene Nanoplatelets with Desirable Electrical Conductivity and Oxygen Barrier Properties. ACS Omega, 2019, 4, 19746-19755.	3.5	22
17	An efficient pure polyimide ammonia sensor. Journal of Materials Chemistry C, 2016, 4, 7790-7797.	5.5	20
18	Keratin–cinnamon essential oil biocomposite fibrous patches for skin burn care. Materials Advances, 2020, 1, 1805-1816.	5.4	20

#	Article	IF	CITATIONS
19	Laser induced forward transfer of metal oxides using femtosecond double pulses. Applied Surface Science, 2010, 257, 508-511.	6.1	18
20	Optical and microstructural properties of p-type SrCu2O2: First principles modeling and experimental studies. Thin Solid Films, 2007, 515, 8624-8631.	1.8	15
21	Electrowetting Properties of ZnO and TiO ₂ Nanostructured Thin Films. Journal of Physical Chemistry C, 2010, 114, 10249-10253.	3.1	14
22	The effect of deposition parameters on the properties of SrCu2O2 films fabricated by pulsed laser deposition. Thin Solid Films, 2008, 516, 1449-1452.	1.8	12
23	Properties of strontium copper oxide (SCO) deposited by PLD using the 308 nm laser and formation of SCO/Si heterostructures. Physica Status Solidi (A) Applications and Materials Science, 2010, 207, 1726-1730.	1.8	11
24	Nanosecond and femtosecond ablation of La0.6Ca0.4CoO3: a comparison between plume dynamics and composition of the films. Applied Physics A: Materials Science and Processing, 2011, 105, 167-176.	2.3	11
25	Thermo-responsive nanofibers for on-demand biocompound delivery platform. Chemical Engineering Journal, 2022, 445, 136744.	12.7	11
26	ac susceptibility of a paramagnetic Meissner effect sample. Physica C: Superconductivity and Its Applications, 1998, 297, 317-325.	1.2	10
27	Deposition of thin films for sensors by pulsed laser ablation of iron and chromium silicide targets. Applied Surface Science, 2007, 254, 1288-1291.	6.1	10
28	Femtosecond laser deposition of TiO2 by laser induced forward transfer. Thin Solid Films, 2010, 518, 5525-5529.	1.8	10
29	Negative giant longitudinal magnetoresistance inNiMnSbâ^•InSb: Interface effect. Physical Review B, 2006, 74, .	3.2	9
30	Modification of AlN thin films morphology and structure by temporally shaping of fs laser pulses used for deposition. Thin Solid Films, 2011, 519, 6381-6387.	1.8	9
31	Y thin films by ultrashort pulsed laser deposition for photocathode application. Applied Surface Science, 2012, 258, 8719-8723.	6.1	9
32	Properties of Silicon and Metal Oxide Electrowetting Systems. Journal of Adhesion Science and Technology, 2012, 26, 2143-2163.	2.6	8
33	Graphene Nanoplatelets Render Poly(3-Hydroxybutyrate) a Suitable Scaffold to Promote Neuronal Network Development. Frontiers in Neuroscience, 2021, 15, 731198.	2.8	8
34	Ultrafast electron dynamics in ZnO/Si micro-cones. Applied Physics A: Materials Science and Processing, 2010, 98, 701-705.	2.3	7
35	Self-organized microporous cellulose-nylon membranes. Polymer, 2017, 120, 255-263.	3.8	7
36	Nanocomposite fabrication via direct ultra-fast laser ablation of titanium in aqueous monomer solution. Laser Physics Letters, 2015, 12, 125601.	1.4	6

#	Article	IF	CITATIONS
37	Thin film growth of delafossite-related derivative β-Î a FeO2 on a ZnO layer by pulsed laser deposition. Thin Solid Films, 2018, 645, 424-430.	1.8	6
38	The effect of PLD deposition parameters on the properties of p-SrCu2O2/n-Si diodes. Thin Solid Films, 2008, 516, 8154-8158.	1.8	4
39	Mg-based photocathodes prepared by ns, ps and fs PLD for the production of high brightness electron beams. Applied Surface Science, 2009, 255, 5228-5231.	6.1	4
40	Investigation of the electro-spinnability of alginate solutions containing gold precursor HAuCl 4. Journal of Colloid and Interface Science, 2016, 483, 60-66.	9.4	3
41	Detailed Studies of Yttrium Thin Films Deposited by Laser Radiation of Different Pulse Durations. Physics Procedia, 2012, 32, 335-339.	1.2	2
42	Magneto-transport properties of NiMnSb thin films on InSb single crystals: Negative giant magnetoresistance. Physica Status Solidi (A) Applications and Materials Science, 2007, 204, 92-98.	1.8	0
43	An RBS study of thin PLD and MOCVD strontium copper oxide layers. Thin Solid Films, 2008, 516, 8136-8140.	1.8	0