Frédéric R Santer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4593683/publications.pdf

Version: 2024-02-01

377584 488211 1,453 38 21 31 citations h-index g-index papers 39 39 39 3008 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	MYC-Mediated Ribosomal Gene Expression Sensitizes Enzalutamide-resistant Prostate Cancer Cells to EP300/CREBBP Inhibitors. American Journal of Pathology, 2021, 191, 1094-1107.	1.9	14
2	p300 is upregulated by docetaxel and is a target in chemoresistant prostate cancer. Endocrine-Related Cancer, 2020, 27, 187-198.	1.6	17
3	Abstract 1020: p300 and CBP targeting in castration therapy resistant prostate cancer. , 2019, , .		O
4	Olaparib is effective in combination with, and as maintenance therapy after, firstâ€line endocrine therapy in prostate cancer cells. Molecular Oncology, 2018, 12, 561-576.	2.1	21
5	Oncolytic activity of the rhabdovirus VSVâ€GP against prostate cancer. International Journal of Cancer, 2018, 143, 1786-1796.	2.3	29
6	Interleukinâ€4 induces a CD44 _{high} /CD49b _{high} PC3 subpopulation with tumorâ€initiating characteristics. Journal of Cellular Biochemistry, 2018, 119, 4103-4112.	1.2	10
7	The STAT3 Inhibitor Galiellalactone Reduces IL6-Mediated AR Activity in Benign and Malignant Prostate Models. Molecular Cancer Therapeutics, 2018, 17, 2722-2731.	1.9	32
8	Studies on Steroid Receptor Coactivators in Prostate Cancer. Methods in Molecular Biology, 2018, 1786, 259-262.	0.4	7
9	Fractionated Radiation of Primary Prostate Basal Cells Results in Downplay of Interferon Stem Cell and Cell Cycle Checkpoint Signatures. European Urology, 2018, 74, 847-849.	0.9	4
10	Movember GAP1 PDX project: An international collection of serially transplantable prostate cancer patientâ€derived xenograft (PDX) models. Prostate, 2018, 78, 1262-1282.	1.2	76
11	The immunosuppressive cytokine interleukin-4 increases the clonogenic potential of prostate stem-like cells by activation of STAT6 signalling. Oncogenesis, 2017, 6, e342-e342.	2.1	68
12	SOCS3 Modulates the Response to Enzalutamide and Is Regulated by Androgen Receptor Signaling and CpG Methylation in Prostate Cancer Cells. Molecular Cancer Research, 2016, 14, 574-585.	1.5	36
13	The AR/NCOA1 axis regulates prostate cancer migration by involvement of PRKD1. Endocrine-Related Cancer, 2016, 23, 495-508.	1.6	13
14	DNA damage signalling barrier, oxidative stress and treatmentâ€relevant DNA repair factor alterations during progression of human prostate cancer. Molecular Oncology, 2016, 10, 879-894.	2.1	41
15	Abstract A191: Augmenting the therapeutic efficacy of oncolytic LCMV-GP pseudotyped vesicular stomatitis virus via modulation of the innate immune system. , 2016, , .		O
16	Therapy escape mechanisms in the malignant prostate. Seminars in Cancer Biology, 2015, 35, 133-144.	4.3	59
17	Mechanistic rationale for MCL1 inhibition during androgen deprivation therapy. Oncotarget, 2015, 6, 6105-6122.	0.8	28
18	Abstract 5059: Androgenic signaling influences SOCS-3 in prostate cancer cells. , 2015, , .		0

#	Article	lF	Citations
19	Androgen receptor signaling in prostate cancer. Cancer and Metastasis Reviews, 2014, 33, 413-427.	2.7	204
20	Abstract 618: Implications of inhibition of steroid receptor co-activator-1 in human prostate cancer. , 2014, , .		0
21	Molecular aspects of androgenic signaling and possible targets for therapeutic intervention in prostate cancer. Steroids, 2013, 78, 851-859.	0.8	24
22	IL6 sensitizes prostate cancer to the antiproliferative effect of IFN $\hat{l}\pm2$ through IRF9. Endocrine-Related Cancer, 2013, 20, 677-689.	1.6	25
23	Abstract 1726: Androgenic regulation of the anti-apoptotic Bcl-2 family member Mcl-1 in prostate cancer cells, 2013,,.		0
24	Sorafenib decreases proliferation and induces apoptosis of prostate cancer cells by inhibition of the androgen receptor and Akt signaling pathways. Endocrine-Related Cancer, 2012, 19, 305-319.	1.6	56
25	228 THE MULTIKINASE INHIBITOR SORAFENIB SUPPRESSES AR EXPRESSION AND SIGNALING AND INDUCES APOPTOSIS OF CASTRATION THERAPY-RESISTANT PROSTATE CANCER CELLS. Journal of Urology, 2012, 187, .	0.2	0
26	Androgen receptor co-activators in the regulation of cellular events in prostate cancer. World Journal of Urology, 2012, 30, 297-302.	1.2	33
27	Abstract 3350: Implications of the STAT6 pathway by interleukin-4 in prostate cancer. Cancer Research, 2012, 72, 3350-3350.	0.4	11
28	Transcriptional coactivators p300 and CBP stimulate estrogen receptorâ€beta signaling and regulate cellular events in prostate cancer. Prostate, 2011, 71, 431-437.	1.2	45
29	Inhibition of the Acetyltransferases p300 and CBP Reveals a Targetable Function for p300 in the Survival and Invasion Pathways of Prostate Cancer Cell Lines. Molecular Cancer Therapeutics, 2011, 10, 1644-1655.	1.9	188
30	Abstract 1622: Inhibition of the acetyltransferase p300 as a novel pro-apoptotic and anti-invasion approach for treatment of prostate cancer. , 2011, , .		1
31	Interleukin-6 trans-signalling differentially regulates proliferation, migration, adhesion and maspin expression in human prostate cancer cells. Endocrine-Related Cancer, 2010, 17, 241-253.	1.6	102
32	SOCS-3 antagonises the proliferative and migratory effects of fibroblast growth factor-2 in prostate cancer by inhibition of p44/p42 MAPK signalling. Endocrine-Related Cancer, 2010, 17, 525-538.	1.6	34
33	Down-regulation of Suppressor of Cytokine Signaling-3 Causes Prostate Cancer Cell Death through Activation of the Extrinsic and Intrinsic Apoptosis Pathways. Cancer Research, 2009, 69, 7375-7384.	0.4	78
34	Suppressor of Cytokine Signaling (SOCS)-1 Is Expressed in Human Prostate Cancer and Exerts Growth-Inhibitory Function through Down-Regulation of Cyclins and Cyclin-Dependent Kinases. American Journal of Pathology, 2009, 174, 1921-1930.	1.9	67
35	Identification of the FHL2 Transcriptional Coactivator as a New Functional Target of the E7 Oncoprotein of Human Papillomavirus Type 16. Journal of Virology, 2007, 81, 1027-1032.	1.5	10
36	High-risk Human Papillomavirus E7 Oncoprotein Detection in Cervical Squamous Cell Carcinoma. Clinical Cancer Research, 2007, 13, 7067-7072.	3.2	33

#	Article	IF	CITATIONS
37	Human papillomavirus type 16 E7 oncoprotein inhibits apoptosis mediated by nuclear insulin-like growth factor-binding protein-3 by enhancing its ubiquitin/proteasome-dependent degradation. Carcinogenesis, 2007, 28, 2511-2520.	1.3	19
38	Nuclear Insulin-Like Growth Factor Binding Protein-3 Induces Apoptosis and Is Targeted to Ubiquitin/Proteasome–Dependent Proteolysis. Cancer Research, 2006, 66, 3024-3033.	0.4	68