Aliénor Lavergne

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4593446/publications.pdf

Version: 2024-02-01

686830 940134 16 482 13 16 citations g-index h-index papers 28 28 28 630 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Observed and modelled historical trends in the waterâ€use efficiency of plants and ecosystems. Global Change Biology, 2019, 25, 2242-2257.	4.2	85
2	Ecoâ€evolutionary optimality as a means to improve vegetation and landâ€surface models. New Phytologist, 2021, 231, 2125-2141.	3 . 5	71
3	Compiled records of atmospheric CO2 concentrations and stable carbon isotopes to reconstruct climate and derive plant ecophysiological indices from tree rings. Dendrochronologia, 2020, 63, 125748.	1.0	55
4	Temporal changes in climatic limitation of tree-growth at upper treeline forests: Contrasted responses along the west-to-east humidity gradient in Northern Patagonia. Dendrochronologia, 2015, 36, 49-59.	1.0	39
5	Historical changes in the stomatal limitation of photosynthesis: empirical support for an optimality principle. New Phytologist, 2020, 225, 2484-2497.	3.5	39
6	Impacts of soil water stress on the acclimated stomatal limitation of photosynthesis: Insights from stable carbon isotope data. Global Change Biology, 2020, 26, 7158-7172.	4.2	33
7	Improvement of isotope-based climate reconstructions in Patagonia through a better understanding of climate influences on isotopic fractionation in tree rings. Earth and Planetary Science Letters, 2017, 459, 372-380.	1.8	25
8	Are the oxygen isotopic compositions of <i>Fitzroya cupressoides</i> and <i>Nothofagus pumilio</i> cellulose promising proxies for climate reconstructions in northern Patagonia?. Journal of Geophysical Research G: Biogeosciences, 2016, 121, 767-776.	1.3	21
9	Comparisons of the Performance of \hat{l}' ¹³ C and \hat{l}' ¹⁸ O of <scp><i>Fagus sylvatica</i></scp> , <scp><i>Pinus sylvestris</i></scp> , and <scp><i>Quercus petraea</i></scp> in the Record of Past Climate Variations. Journal of Geophysical Research G: Biogeosciences, 2018, 123, 1145-1160.	1.3	21
10	Modelling tree ring cellulose <i>l´</i> ¹⁸ O variations in two temperature-sensitive tree species from North and South America. Climate of the Past, 2017, 13, 1515-1526.	1.3	20
11	Past Summer Temperatures Inferred From Dendrochronological Records of <scp><i>Fitzroya cupressoides</i></scp> on the Eastern Slope of the Northern Patagonian Andes. Journal of Geophysical Research G: Biogeosciences, 2018, 123, 32-45.	1.3	20
12	A comparison of some simple methods used to detect unstable temperature responses in tree-ring chronologies. Dendrochronologia, 2018, 48, 52-73.	1.0	15
13	Differences in carbon isotope discrimination between angiosperm and gymnosperm woody plants, and their geological significance. Geochimica Et Cosmochimica Acta, 2021, 300, 215-230.	1.6	13
14	Global decadal variability of plant carbon isotope discrimination and its link to gross primary production. Global Change Biology, 2022, 28, 524-541.	4.2	13
15	Tree-ring cellulose δ180 records similar large-scale climate influences as precipitation δ180 in the Northwest Territories of Canada. Climate Dynamics, 2022, 58, 759-776.	1.7	10
16	A new snow module improves predictions of the isotope-enabled MAIDENiso forest growth model. Geoscientific Model Development, 2022, 15, 1931-1952.	1.3	2