

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4593082/publications.pdf Version: 2024-02-01

XINC HU

#	Article	IF	CITATIONS
1	Quercetin as a tyrosinase inhibitor: Inhibitory activity, conformational change and mechanism. Food Research International, 2017, 100, 226-233.	2.9	178
2	Galangin inhibits \hat{I} ±-glucosidase activity and formation of non-enzymatic glycation products. Food Chemistry, 2019, 271, 70-79.	4.2	148
3	<scp>d</scp> â€Mannose: Properties, Production, and Applications: An Overview. Comprehensive Reviews in Food Science and Food Safety, 2016, 15, 773-785.	5.9	129
4	New Insights into the Inhibition Mechanism of Betulinic Acid on α-Glucosidase. Journal of Agricultural and Food Chemistry, 2018, 66, 7065-7075.	2.4	129
5	Inhibitory mechanism of two allosteric inhibitors, oleanolic acid and ursolic acid on α-glucosidase. International Journal of Biological Macromolecules, 2018, 107, 1844-1855.	3.6	106
6	Inhibitory mechanism of vitexin on α-glucosidase and its synergy with acarbose. Food Hydrocolloids, 2020, 105, 105824.	5.6	93
7	Interaction of alpinetin with bovine serum albumin: Probing of the mechanism and binding site by spectroscopic methods. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2010, 76, 410-417.	2.0	86
8	Spectroscopic studies on the interaction between carbaryl and calf thymus DNA with the use of ethidium bromide as a fluorescence probe. Journal of Photochemistry and Photobiology B: Biology, 2012, 108, 53-61.	1.7	82
9	Exploring inhibitory mechanism of gallocatechin gallate on a-amylase and a-glucosidase relevant to postprandial hyperglycemia. Journal of Functional Foods, 2018, 48, 200-209.	1.6	80
10	Studies on the interaction of aminocarb with calf thymus DNA by spectroscopic methods. Pesticide Biochemistry and Physiology, 2010, 98, 206-212.	1.6	75
11	Spectroscopic studies of the interaction between pirimicarb and calf thymus DNA. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2011, 78, 687-694.	2.0	73
12	Inhibitory mechanism of epicatechin gallate on α-amylase and α-glucosidase and its combinational effect with acarbose or epigallocatechin gallate. Journal of Molecular Liquids, 2019, 290, 111202.	2.3	53
13	Inhibition mechanism of baicalein and baicalin on xanthine oxidase and their synergistic effect with allopurinol. Journal of Functional Foods, 2018, 50, 172-182.	1.6	52
14	Inhibitory mechanism of epicatechin gallate on tyrosinase: inhibitory interaction, conformational change and computational simulation. Food and Function, 2020, 11, 4892-4902.	2.1	51
15	Kaempferol inhibits the activity of pancreatic lipase and its synergistic effect with orlistat. Journal of Functional Foods, 2020, 72, 104041.	1.6	47
16	New insights into the binding mechanism between osthole and β-lactoglobulin: Spectroscopic, chemometrics and docking studies. Food Research International, 2019, 120, 226-234.	2.9	45
17	Relationships of dietary flavonoid structure with its tyrosinase inhibitory activity and affinity. LWT - Food Science and Technology, 2019, 107, 25-34.	2.5	43
18	Mechanism of fisetin suppressing superoxide anion and xanthine oxidase activity. Journal of Functional Foods, 2019, 58, 1-10.	1.6	30

Xing Hu

#	Article	IF	CITATIONS
19	Colorimetric detection of cadmium in water using <i>L</i> -cysteine Functionalized gold–silver nanoparticles. Analytical Letters, 2018, 51, 2906-2919.	1.0	28
20	Interaction characterization of 5â^'hydroxymethylâ^'2â^'furaldehyde with human serum albumin: Binding characteristics, conformational change and mechanism. Journal of Molecular Liquids, 2020, 297, 111835.	2.3	28
21	Mechanistic insights into the inhibition of pancreatic lipase by apigenin: Inhibitory interaction, conformational change and molecular docking studies. Journal of Molecular Liquids, 2021, 335, 116505.	2.3	28
22	Inhibitory effect of epicatechin gallate on protein glycation. Food Research International, 2019, 122, 230-240.	2.9	27
23	Inhibitory effect of corosolic acid on <i>α</i> â€glucosidase: kinetics, interaction mechanism, and molecular simulation. Journal of the Science of Food and Agriculture, 2019, 99, 5881-5889.	1.7	26
24	Interaction of isoeugenol with calf thymus DNA and its protective effect on DNA oxidative damage. Journal of Molecular Liquids, 2019, 282, 356-365.	2.3	26
25	Influence of transglutaminaseâ€assisted ultrasound treatment on the structure and functional properties of soy protein isolate. Journal of Food Processing and Preservation, 2019, 43, e14203.	0.9	23
26	The inhibition of oleanolic acid on protein non-enzymatic glycation. LWT - Food Science and Technology, 2020, 125, 109253.	2.5	18
27	Epicatechin Gallate as Xanthine Oxidase Inhibitor: Inhibitory Kinetics, Binding Characteristics, Synergistic Inhibition, and Action Mechanism. Foods, 2021, 10, 2191.	1.9	18
28	Exploring the binding interaction of Maillard reaction byâ€product 5â€hydroxymethylâ€2â€furaldehyde with calf thymus DNA. Journal of the Science of Food and Agriculture, 2019, 99, 3192-3202.	1.7	15
29	Development of a recombinant d-mannose isomerase and its characterizations for d-mannose synthesis. International Journal of Biological Macromolecules, 2016, 89, 328-335.	3.6	14
30	Interaction between quinoline yellow and human serum albumin: spectroscopic, chemometric and molecular docking studies. Journal of the Science of Food and Agriculture, 2019, 99, 73-82.	1.7	14
31	Change of benzo(a)pyrene during frying and its groove binding to calf thymus DNA. Food Chemistry, 2021, 350, 129276.	4.2	13
32	Inhibitory Mechanism of Baicalein on Acetylcholinesterase: Inhibitory Interaction, Conformational Change, and Computational Simulation. Foods, 2022, 11, 168.	1.9	13
33	Insights into the mechanism of groove binding between 4–octylphenol and calf thymus DNA. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2020, 238, 118454.	2.0	12
34	Novel insights into the interaction mechanism of 5-hydroxymethyl-2-furaldehyde with β-casein and its effects on the structure and function of β-casein. LWT - Food Science and Technology, 2021, 152, 112360.	2.5	12
35	Effects of interaction between hesperetin/hesperidin and glutenin on the structure and functional properties of glutenin. LWT - Food Science and Technology, 2022, 155, 112983.	2.5	12
36	Metabolic engineering of arginine permeases to reduce the formation of urea in Saccharomyces cerevisiae. World Journal of Microbiology and Biotechnology, 2018, 34, 47.	1.7	11

Xing Hu

#	Article	IF	CITATIONS
37	Characterizing the binding of tert-butylhydroquinone and its oxidation product tert-butylquinone with calf thymus DNA in vitro. Journal of Molecular Liquids, 2020, 302, 112338.	2.3	10
38	Revealing the groove binding characteristics of plant growth regulator 3-indoleacetic acid with calf thymus DNA. Journal of Molecular Liquids, 2021, 326, 115265.	2.3	10
39	Colorimetric detection of the β-agonist ractopamine in animal feed, tissue and urine samples using gold–silver alloy nanoparticles modified with sulfanilic acid. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2019, 36, 35-45.	1.1	9
40	Metabolic Engineering of Four GATA Factors to Reduce Urea and Ethyl Carbamate Formation in a Model Rice Wine System. Journal of Agricultural and Food Chemistry, 2018, 66, 10881-10889.	2.4	7
41	Impact of glucansucrase treatment on structure and properties of maize starch. Starch/Staerke, 2017, 69, 1600222.	1.1	6
42	Exploring the binding mechanism of ferulic acid and ovalbumin: insights from spectroscopy, molecular docking and dynamics simulation. Journal of the Science of Food and Agriculture, 2022, 102, 3835-3846.	1.7	6
43	Action mechanisms of two key xanthine oxidase inhibitors in tea polyphenols and their combined effect with allopurinol. Journal of the Science of Food and Agriculture, 2022, 102, 7195-7208.	1.7	6
44	Regulation and metabolic engineering strategies for permeases of Saccharomyces cerevisiae. World Journal of Microbiology and Biotechnology, 2019, 35, 112.	1.7	3
45	Groove binding between ferulic acid and calf thymus DNA: spectroscopic methodology combined with chemometrics and molecular docking studies. Journal of Biomolecular Structure and Dynamics, 2020, 38, 2029-2037.	2.0	3
46	Multi-Spectroscopic and Molecular Simulation Approaches to Characterize the Intercalation Binding of 1-Naphthaleneacetic Acid With Calf Thymus DNA. Frontiers in Toxicology, 2021, 3, 620501.	1.6	2