Abdul Rahman Mohamed

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/459300/publications.pdf

Version: 2024-02-01

415 papers

35,727 citations

93 h-index 172

g-index

418 all docs

418 docs citations

418 times ranked

38174 citing authors

#	Article	IF	CITATIONS
1	Advancement of biorefinery-derived platform chemicals from macroalgae: a perspective for bioethanol and lactic acid. Biomass Conversion and Biorefinery, 2024, 14, 1443-1479.	2.9	10
2	Dimensional heterojunction design: The rising star of 2D bismuth-based nanostructured photocatalysts for solar-to-chemical conversion. Nano Research, 2023, 16, 4310-4364.	5.8	34
3	Development of microwave-assisted nitrogen-modified activated carbon for efficient biogas desulfurization: a practical approach. Environmental Science and Pollution Research, 2023, 30, 17129-17148.	2.7	1
4	Anaerobic digestate as a low-cost nutrient source for sustainable microalgae cultivation: A way forward through waste valorization approach. Science of the Total Environment, 2022, 803, 150070.	3.9	65
5	A review on dry-based and wet-based catalytic sulphur dioxide (SO2) reduction technologies. Journal of Hazardous Materials, 2022, 423, 127061.	6.5	28
6	Facile asymmetric modification of graphene nanosheets using \hat{l}^2 -carrageenan as a green template. Journal of Colloid and Interface Science, 2022, 607, 1131-1141.	5.0	4
7	Ameliorating Cu2+ reduction in microbial fuel cell with Z-scheme BiFeO3 decorated on flower-like ZnO composite photocathode. Chemosphere, 2022, 287, 132384.	4.2	45
8	Catalytic co-hydrothermal carbonization of food waste digestate and yard waste for energy application and nutrient recovery. Bioresource Technology, 2022, 344, 126395.	4.8	67
9	Shedding light on the energy applications of emerging 2D hybrid organic-inorganic halide perovskites. IScience, 2022, 25, 103753.	1.9	9
10	Solarâ€powered chemistry: Engineering lowâ€dimensional carbon nitrideâ€based nanostructures for selective <scp>CO₂</scp> conversion to <scp>C₁C₂</scp> products. InformaÄnÃ-Materiály, 2022, 4, .	8.5	53
11	Comparative study of g-C3N4/Ag-based metals (V, Mo, and Fe) composites for degradation of Reactive Black 5 (RB5) under simulated solar light irradiation. Journal of Environmental Chemical Engineering, 2022, 10, 107308.	3.3	7
12	Shining light on <scp>Znln₂S₄</scp> photocatalysts: Promotional effects of surface and heterostructure engineering toward artificial photosynthesis. EcoMat, 2022, 4, .	6.8	45
13	MXene─A New Paradigm Toward Artificial Nitrogen Fixation for Sustainable Ammonia Generation: Synthesis, Properties, and Future Outlook. , 2022, 4, 212-245.		20
14	Red Phosphorus: An Up-and-Coming Photocatalyst on the Horizon for Sustainable Energy Development and Environmental Remediation. Chemical Reviews, 2022, 122, 3879-3965.	23.0	58
15	Tailorâ€Engineered 2D Cocatalysts: Harnessing Electron–Hole Redox Center of 2D gâ€C ₃ N ₄ Photocatalysts toward Solarâ€toâ€Chemical Conversion and Environmental Purification. Advanced Functional Materials, 2022, 32, .	7.8	93
16	Uncovering the multifaceted roles of nitrogen defects in graphitic carbon nitride for selective photocatalytic carbon dioxide reduction: a density functional theory study. Physical Chemistry Chemical Physics, 2022, 24, 11124-11130.	1.3	4
17	MXenes: An emergent materials for packaging platforms and looking beyond. Nano Select, 2022, 3, 1123-1147.	1.9	9
18	ZnIn ₂ S ₄ â€Based Nanostructures in Artificial Photosynthesis: Insights into Photocatalytic Reduction toward Sustainable Energy Production. Small Structures, 2022, 3, .	6.9	30

#	Article	IF	Citations
19	Enhanced synchronous photocatalytic 4-chlorophenol degradation and Cr(VI) reduction by novel magnetic separable visible-light-driven Z-scheme CoFe2O4/P-doped BiOBr heterojunction nanocomposites. Environmental Research, 2022, 212, 113394.	3.7	59
20	Metal-free n/n–junctioned graphitic carbon nitride (g-C3N4): a study to elucidate its charge transfer mechanism and application for environmental remediation. Environmental Science and Pollution Research, 2021, 28, 4388-4403.	2.7	22
21	CoS2 engulfed ultra-thin S-doped g-C3N4 and its enhanced electrochemical performance in hybrid asymmetric supercapacitor. Journal of Colloid and Interface Science, 2021, 584, 204-215.	5.0	84
22	Green synthesis of Fe-ZnO nanoparticles with improved sunlight photocatalytic performance for polyethylene film deterioration and bacterial inactivation. Materials Science in Semiconductor Processing, 2021, 123, 105574.	1.9	84
23	Engineering Layered Double Hydroxide–Based Photocatalysts Toward Artificial Photosynthesis: Stateâ€ofâ€theâ€Art Progress and Prospects. Solar Rrl, 2021, 5, 2000535.	3.1	53
24	A current overview of the oxidative desulfurization of fuels utilizing heat and solar light: from materials design to catalysis for clean energy. Nanoscale Horizons, 2021, 6, 588-633.	4.1	53
25	Advanced nanomaterials for energy conversion and storage: current status and future opportunities. Nanoscale, 2021, 13, 9904-9907.	2.8	14
26	Self-flocculation of enriched mixed microalgae culture in a sequencing batch reactor. Environmental Science and Pollution Research, 2021, 28, 26595-26605.	2.7	3
27	Characterization of titanium oxide optical band gap produced from leachate sludge treatment with titanium tetrachloride. Environmental Science and Pollution Research, 2021, 28, 17587-17601.	2.7	9
28	Fabricating 2D/2D/2D heterojunction of graphene oxide mediated g-C3N4 and ZnV2O6 composite with kinetic modelling for photocatalytic CO2 reduction to fuels under UV and visible light. Journal of Materials Science, 2021, 56, 9985-10007.	1.7	18
29	An investigation on the relationship between physicochemical characteristics of alumina-supported cobalt catalyst and its performance in dry reforming of methane. Environmental Science and Pollution Research, 2021, 28, 29157-29176.	2.7	8
30	Surface decorated coral-like magnetic BiFeO3 with Au nanoparticles for effective sunlight photodegradation of 2,4-D and E. coli inactivation. Journal of Molecular Liquids, 2021, 326, 115372.	2.3	71
31	Microalgae Cultivation in Palm Oil Mill Effluent (POME) Treatment and Biofuel Production. Sustainability, 2021, 13, 3247.	1.6	83
32	Highly Sensitive and Selective Gas Sensor Using Heteroatom Doping Graphdiyne: A DFT Study. Advanced Electronic Materials, 2021, 7, 2001244.	2.6	37
33	Lithium–Sulfur Battery Cathode Design: Tailoring Metalâ€Based Nanostructures for Robust Polysulfide Adsorption and Catalytic Conversion. Advanced Materials, 2021, 33, e2008654.	11.1	217
34	Characterization of TiH2 Powders Produced from TiCl4-MgH2 Reactions under Hydrogen Atmosphere. Journal of Materials Engineering and Performance, 2021, 30, 3243-3257.	1.2	2
35	Pointâ€Defect Engineering: Leveraging Imperfections in Graphitic Carbon Nitride (g ₃ N ₄) Photocatalysts toward Artificial Photosynthesis. Small, 2021, 17, e2006851.	5.2	139
36	Algae biopolymer towards sustainable circular economy. Bioresource Technology, 2021, 325, 124702.	4.8	112

#	Article	IF	Citations
37	Sustainable and green pretreatment strategy of Eucheuma denticulatum residues for third-generation l-lactic acid production. Bioresource Technology, 2021, 330, 124930.	4.8	22
38	Abatement of hazardous materials and biomass waste via pyrolysis and co-pyrolysis for environmental sustainability and circular economy. Environmental Pollution, 2021, 278, 116836.	3.7	64
39	Sulfur-doped graphitic carbon nitride incorporated bismuth oxychloride/Cobalt based type-II heterojunction as a highly stable material for photoelectrochemical water splitting. Journal of Colloid and Interface Science, 2021, 591, 85-95.	5.0	44
40	Prospects and Challenges of MXenes as Emerging Sensing Materials for Flexible and Wearable Breathâ€Based Biomarker Diagnosis. Advanced Healthcare Materials, 2021, 10, e2100970.	3.9	41
41	Synthesis of Ti Powder from the Reduction of TiCl4 with Metal Hydrides in the H2 Atmosphere: Thermodynamic and Techno-Economic Analyses. Processes, 2021, 9, 1567.	1.3	4
42	Green additive to upgrade biochar from spent coffee grounds by torrefaction for pollution mitigation. Environmental Pollution, 2021, 285, 117244.	3.7	13
43	Magnetic NiFe2O4 nanoparticles decorated on N-doped BiOBr nanosheets for expeditious visible light photocatalytic phenol degradation and hexavalent chromium reduction via a Z-scheme heterojunction mechanism. Applied Surface Science, 2021, 559, 149966.	3.1	82
44	Physical and Chemical Activation of Graphene-Derived Porous Nanomaterials for Post-Combustion Carbon Dioxide Capture. Nanomaterials, 2021, 11, 2419.	1.9	9
45	Life cycle assessment of environmental impacts associated with oxidative desulfurization of diesel fuels catalyzed by metal-free reduced graphene oxide. Environmental Pollution, 2021, 288, 117677.	3.7	23
46	Third-generation L-Lactic acid production by the microwave-assisted hydrolysis of red macroalgae Eucheuma denticulatum extract. Bioresource Technology, 2021, 342, 125880.	4.8	15
47	All-solid-state direct Z-scheme NiTiO ₃ /Cd _{0.5} Zn _{0.5} S heterostructures for photocatalytic hydrogen evolution with visible light. Journal of Materials Chemistry A, 2021, 9, 10270-10276.	5.2	136
48	Dry Reforming of Methane on Cobalt Catalysts: DFT-Based Insights into Carbon Deposition Versus Removal. Journal of Physical Chemistry C, 2021, 125, 21902-21913.	1.5	14
49	Effect of graphite exfoliation routes on the properties of exfoliated graphene and its photocatalytic applications. Journal of Environmental Chemical Engineering, 2021, 9, 106506.	3.3	23
50	Adsorption of CO ₂ on Terrace, Step, and Defect Sites on Pt Surfaces: A Combined TPD, XPS, and DFT Study. Journal of Physical Chemistry C, 2021, 125, 23657-23668.	1.5	12
51	Comprehensive Mechanism of CO ₂ Electroreduction on Nonâ€Noble Metal Singleâ€Atom Catalysts of Mo ₂ CS ₂ â€MXene. Chemistry - A European Journal, 2021, 27, 17900-17909.	1.7	16
52	Progress in adsorption capacity of nanomaterials for carbon dioxide capture: A comparative study. Journal of Cleaner Production, 2021, 328, 129553.	4.6	37
53	A Tough Reversible Biomimetic Transparent Adhesive Tape with Pressure-Sensitive and Wet-Cleaning Properties. ACS Nano, 2021, 15, 19194-19201.	7.3	20
54	Recent advances in developing engineered biochar for CO2 capture: An insight into the biochar modification approaches. Journal of Environmental Chemical Engineering, 2021, 9, 106869.	3.3	62

#	Article	IF	CITATIONS
55	Nanoengineering Carbonaceous Materials: A Multifunctional Platform towards a Greener Energy Future. Small, 2021, 17, e2106667.	5.2	2
56	Magnetic-Based Photocatalyst for Antibacterial Application and Catalytic Performance. Environmental Chemistry for A Sustainable World, 2020, , 195-215.	0.3	2
57	Magnetically recoverable Pd-loaded BiFeO3 microcomposite with enhanced visible light photocatalytic performance for pollutant, bacterial and fungal elimination. Separation and Purification Technology, 2020, 236, 116195.	3.9	78
58	Flocculation of Chlorella vulgaris by shell waste-derived bioflocculants for biodiesel production: Process optimization, characterization and kinetic studies. Science of the Total Environment, 2020, 702, 134995.	3.9	58
59	Advances of macroalgae biomass for the third generation of bioethanol production. Chinese Journal of Chemical Engineering, 2020, 28, 502-517.	1.7	61
60	Insights on the impact of doping levels in oxygen-doped gC3N4 and its effects on photocatalytic activity. Applied Surface Science, 2020, 504, 144427.	3.1	69
61	Insights and utility of cycling-induced thermal deformation of calcium-based microporous material as post-combustion CO2 sorbents. Fuel, 2020, 260, 116354.	3.4	14
62	Low temperature adsorption of nitric oxide on cerium impregnated biomass-derived biochar. Korean Journal of Chemical Engineering, 2020, 37, 130-140.	1.2	21
63	In situ acid fabrication of g-C3N4 photocatalyst with improved adsorptive and photocatalytic properties. Materials Letters, 2020, 261, 126990.	1.3	13
64	Energy level tuning of CdSe colloidal quantum dots in ternary 0D-2D-2D CdSe QD/B-rGO/O-gC3N4 as photocatalysts for enhanced hydrogen generation. Applied Catalysis B: Environmental, 2020, 265, 118592.	10.8	45
65	Bi2O3 particles decorated on porous g-C3N4 sheets: Enhanced photocatalytic activity through a direct Z-scheme mechanism for degradation of Reactive Black 5 under UVâ \in vis light. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 389, 112289.	2.0	58
66	Nitrogen-doped carbon quantum dots-decorated 2D graphitic carbon nitride as a promising photocatalyst for environmental remediation: A study on the importance of hybridization approach. Journal of Environmental Management, 2020, 255, 109936.	3.8	50
67	Bioinspired green synthesis of ZnO structures with enhanced visible light photocatalytic activity. Journal of Materials Science: Materials in Electronics, 2020, 31, 1144-1158.	1.1	22
68	Investigation of synergy and inhibition effects during co-gasification of tire char and biomass in CO2 environment. Biomass Conversion and Biorefinery, 2020, , 1.	2.9	3
69	Development of highly selective In2O3/ZrO2 catalyst for hydrogenation of CO2 to methanol: An insight into the catalyst preparation method. Korean Journal of Chemical Engineering, 2020, 37, 1680-1689.	1.2	7
70	Photocatalytic carbon dioxide reforming of methane as an alternative approach for solar fuel production-a review. Renewable and Sustainable Energy Reviews, 2020, 134, 110363.	8.2	35
71	Emerging Nanomaterials for Lightâ€Driven Reactions: Past, Present, and Future. Solar Rrl, 2020, 4, 2000354.	3.1	3
72	CO2 reforming of methane to syngas over multi-walled carbon nanotube supported Ni-Ce nanoparticles: effect of different synthesis methods. Environmental Science and Pollution Research, 2020, 27, 43011-43027.	2.7	2

#	Article	IF	CITATIONS
73	Hydrochar production from high-ash low-lipid microalgal biomass via hydrothermal carbonization: Effects of operational parameters and products characterization. Environmental Research, 2020, 188, 109828.	3.7	64
74	Macroalgae-derived regenerated cellulose in the stabilization of oil-in-water Pickering emulsions. Carbohydrate Polymers, 2020, 249, 116875.	5.1	15
7 5	Density Functional Theory Study of Single Metal Atoms Embedded into MBene for Electrocatalytic Conversion of N ₂ to NH ₃ . ACS Applied Nano Materials, 2020, 3, 9870-9879.	2.4	35
76	2D/2D Heterostructured Photocatalysts: An Emerging Platform for Artificial Photosynthesis. Solar Rrl, 2020, 4, 2070085.	3.1	10
77	Pbâ€Based Halide Perovskites: Recent Advances in Photo(electro)catalytic Applications and Looking Beyond. Advanced Functional Materials, 2020, 30, 1909667.	7.8	77
78	Topotactic Transformation of Bismuth Oxybromide into Bismuth Tungstate: Bandgap Modulation of Single-Crystalline {001}-Faceted Nanosheets for Enhanced Photocatalytic CO ₂ Reduction. ACS Applied Materials & Distriction (2008) 12, 26991-27000.	4.0	53
79	2D/2D Heterostructured Photocatalysts: An Emerging Platform for Artificial Photosynthesis. Solar Rrl, 2020, 4, 2000132.	3.1	94
80	Sustainable Catalytic Processes Driven by Graphene-Based Materials. Processes, 2020, 8, 672.	1.3	8
81	Enhanced interfacial electron transfer and boosted visible-light photocatalytic hydrogen evolution activity of g-C3N4 by noble-metal-free MoSe2 nanoparticles. Journal of Materials Science, 2020, 55, 13114-13126.	1.7	22
82	Z-scheme heterojunction nanocomposite fabricated by decorating magnetic MnFe2O4 nanoparticles on BiOBr nanosheets for enhanced visible light photocatalytic degradation of 2,4-dichlorophenoxyacetic acid and Rhodamine B. Separation and Purification Technology, 2020, 250, 117186.	3.9	92
83	Rational Design of Carbonâ€Based 2D Nanostructures for Enhanced Photocatalytic CO ₂ Reduction: A Dimensionality Perspective. Chemistry - A European Journal, 2020, 26, 9710-9748.	1.7	125
84	Bifunctional Z-Scheme Ag/AgVO3/g-C3N4 photocatalysts for expired ciprofloxacin degradation and hydrogen production from natural rainwater without using scavengers. Journal of Environmental Management, 2020, 270, 110803.	3.8	50
85	Enhancement of CO2 adsorption on biochar sorbent modified by metal incorporation. Environmental Science and Pollution Research, 2020, 27, 11809-11829.	2.7	45
86	Graphene nanoplatelets with low defect density as a synergetic adsorbent and electron sink for ZnO in the photocatalytic degradation of Methylene Blue under UV–vis irradiation. Materials Research Bulletin, 2020, 128, 110876.	2.7	51
87	Recent progress in two-dimensional nanomaterials for photocatalytic carbon dioxide transformation into solar fuels. Materials Today Sustainability, 2020, 9, 100037.	1.9	29
88	Zâ€Schemaâ€Photokatalysesysteme für die Kohlendioxidreduktion: Wo stehen wir heute?. Angewandte Chemie, 2020, 132, 23092-23115.	1.6	30
89	Zâ€Scheme Photocatalytic Systems for Carbon Dioxide Reduction: Where Are We Now?. Angewandte Chemie - International Edition, 2020, 59, 22894-22915.	7.2	435
90	Algae biorefinery: Review on a broad spectrum of downstream processes and products. Bioresource Technology, 2019, 292, 121964.	4.8	138

#	Article	IF	Citations
91	Application of Liquid Chromatography-Mass Spectrometry for the Analysis of Endocrine Disrupting Chemical Transformation Products in Advanced Oxidation Processes and Their Reaction Mechanisms. , 2019, , 1633-1657.		O
92	Exploring transition metal (Cr, Mn, Fe, Co, Ni) promoted copper-catalyst for carbon dioxide hydrogenation to methanol. AIP Conference Proceedings, 2019 , , .	0.3	8
93	Development of Co Supported on Coâ^'Al Spinel Catalysts from Exsolution of Amorphous Coâ^'Al Oxides for Carbon Dioxide Reforming of Methane. ChemCatChem, 2019, 11, 5593-5605.	1.8	28
94	The role of nanosized zeolite Y in the H ₂ -free catalytic deoxygenation of triolein. Catalysis Science and Technology, 2019, 9, 772-782.	2.1	37
95	Full color carbon dots through surface engineering for constructing white light-emitting diodes. Journal of Materials Chemistry C, 2019, 7, 2212-2218.	2.7	69
96	Biofuel and Bioenergy Technology. Energies, 2019, 12, 290.	1.6	12
97	A self-healing hydrogel with pressure sensitive photoluminescence for remote force measurement and healing assessment. Materials Horizons, 2019, 6, 703-710.	6.4	66
98	Overview on catalytic deoxygenation for biofuel synthesis using metal oxide supported catalysts. Renewable and Sustainable Energy Reviews, 2019, 112, 834-852.	8.2	75
99	Life cycle evaluation of microalgae biofuels production: Effect of cultivation system on energy, carbon emission and cost balance analysis. Science of the Total Environment, 2019, 688, 112-128.	3.9	162
100	Hierarchical flower-like ZnIn ₂ S ₄ anchored with well-dispersed Ni ₁₂ P ₅ nanoparticles for high-quantum-yield photocatalytic H ₂ evolution under visible light. Catalysis Science and Technology, 2019, 9, 4010-4016.	2.1	46
101	Advancement of Photocatalytic Water Treatment Technology for Environmental Control. , 2019, , 1719-1746.		O
102	Effective steering of charge flow through synergistic inducing oxygen vacancy defects and p-n heterojunctions in 2D/2D surface-engineered Bi2WO6/BiOI cascade: Towards superior photocatalytic CO2 reduction activity. Chemical Engineering Journal, 2019, 372, 1183-1193.	6.6	210
103	Investigation of synergism and kinetic analysis during CO2 co-gasification of scrap tire char and agro-wastes. Renewable Energy, 2019, 142, 147-157.	4.3	33
104	Midgap-state-mediated two-step photoexcitation in nitrogen defect-modified g-C ₃ N ₄ atomic layers for superior photocatalytic CO ₂ reduction. Catalysis Science and Technology, 2019, 9, 2335-2343.	2.1	83
105	Understanding the atomic and electronic structures origin of defect luminescence of CdSe quantum dots in glass matrix. Journal of the American Ceramic Society, 2019, 102, 5375-5385.	1.9	19
106	Catalytic CO2 gasification of rubber seed shell-derived hydrochar: reactivity and kinetic studies. Environmental Science and Pollution Research, 2019, 26, 11767-11780.	2.7	5
107	Constructing magnetic Pt-loaded BiFeO3 nanocomposite for boosted visible light photocatalytic and antibacterial activities. Environmental Science and Pollution Research, 2019, 26, 10204-10218.	2.7	35
108	Enhanced adsorption of methylene blue on chemically modified graphene nanoplatelets thanks to favorable interactions. Journal of Nanoparticle Research, 2019, 21, 1.	0.8	25

#	Article	IF	CITATIONS
109	Review of large-pore mesostructured cellular foam (MCF) silica and its applications. Open Chemistry, 2019, 17, 1000-1016.	1.0	15
110	Single atom-supported MXene: how single-atomic-site catalysts tune the high activity and selectivity of electrochemical nitrogen fixation. Journal of Materials Chemistry A, 2019, 7, 27620-27631.	5.2	133
111	Sub-5 nm Ultra-Fine FeP Nanodots as Efficient Co-Catalysts Modified Porous g-C ₃ N ₄ for Precious-Metal-Free Photocatalytic Hydrogen Evolution under Visible Light. ACS Applied Materials & Details amp; Interfaces, 2019, 11, 5651-5660.	4.0	208
112	Preparation of Nb2O5-decorated hierarchical porous ZnO microspheres with enhanced photocatalytic degradation of palm oil mill effluent. Journal of Materials Science: Materials in Electronics, 2019, 30, 1739-1750.	1.1	11
113	Simultaneous generation of oxygen vacancies on ultrathin BiOBr nanosheets during visible-light-driven CO2 photoreduction evoked superior activity and long-term stability. Catalysis Today, 2018, 314, 20-27.	2.2	86
114	Tailoring the properties of oxygenated graphene with different oxidation degrees for noble-metal-free photocatalytic hydrogen evolution. Catalysis Today, 2018, 315, 93-102.	2.2	16
115	Effect of cobalt loading on suppression of carbon formation in carbon dioxide reforming of methane over Co/MgO catalyst. Research on Chemical Intermediates, 2018, 44, 2585-2605.	1.3	16
116	Photocatalysis: Co2 P Nanorods as an Efficient Cocatalyst Decorated Porous g-C3 N4 Nanosheets for Photocatalytic Hydrogen Production under Visible Light Irradiation (Part. Part. Syst. Charact. 1/2018). Particle and Particle Systems Characterization, 2018, 35, 1870003.	1.2	4
117	Artificial Photosynthesis: Taking a Big Leap for Powering the Earth by Harnessing Solar Energy. Particle and Particle Systems Characterization, 2018, 35, 1700451.	1.2	10
118	Application of Liquid Chromatography-Mass Spectrometry for the Analysis of Endocrine Disrupting Chemical Transformation Products in Advanced Oxidation Processes and Their Reaction Mechanisms. , 2018, , 1-25.		0
119	Co ₂ P Nanorods as an Efficient Cocatalyst Decorated Porous gâ€C ₃ N ₄ Nanosheets for Photocatalytic Hydrogen Production under Visible Light Irradiation. Particle and Particle Systems Characterization, 2018, 35, 1700251.	1.2	69
120	Advancement of Photocatalytic Water Treatment Technology for Environmental Control. , 2018, , 1-28.		0
121	Engineering nanoscale p–n junction <i>via</i> the synergetic dual-doping of p-type boron-doped graphene hybridized with n-type oxygen-doped carbon nitride for enhanced photocatalytic hydrogen evolution. Journal of Materials Chemistry A, 2018, 6, 3181-3194.	5.2	143
122	Carbon dioxide hydrogenation to methanol over multi-functional catalyst: Effects of reactants adsorption and metal-oxide(s) interfacial area. Journal of Industrial and Engineering Chemistry, 2018, 62, 156-165.	2.9	47
123	The morphological impact of siliceous porous carriers on copper-catalysts for selective direct CO2 hydrogenation to methanol. International Journal of Hydrogen Energy, 2018, 43, 9334-9342.	3.8	36
124	CO ₂ methanation over Ni and Rh based catalysts: Process optimization at moderate temperature. International Journal of Energy Research, 2018, 42, 3289-3302.	2.2	19
125	Semi-continuous cultivation of Chlorella vulgaris using chicken compost as nutrients source: Growth optimization study and fatty acid composition analysis. Energy Conversion and Management, 2018, 164, 363-373.	4.4	55
126	Selective acid-functionalized mesoporous silica catalyst for conversion of glycerol to monoglycerides: state of the art and future prospects. Reviews in Chemical Engineering, 2018, 34, 239-265.	2.3	16

#	Article	IF	Citations
127	Recent trends in graphene materials synthesized by CVD with various carbon precursors. Journal of Materials Science, 2018, 53, 851-879.	1.7	45
128	Sub-2 nm Pt-decorated Zn0.5Cd0.5S nanocrystals with twin-induced homojunctions for efficient visible-light-driven photocatalytic H2 evolution. Applied Catalysis B: Environmental, 2018, 224, 360-367.	10.8	133
129	Photocatalytic fixation of nitrogen to ammonia: state-of-the-art advancements and future prospects. Materials Horizons, 2018, 5, 9-27.	6.4	586
130	Photocatalytic Performance of ZnO/g-C3N4 for Removal of Phenol under Simulated Sunlight Irradiation. Journal of Environmental Engineering, ASCE, 2018, 144, .	0.7	56
131	Frontispiece: Insights into the Electrocatalytic Hydrogen Evolution Reaction Mechanism on Twoâ€Dimensional Transitionâ€Metal Carbonitrides (MXene). Chemistry - A European Journal, 2018, 24, .	1.7	0
132	Harvesting and pre-treatment of microalgae biomass via ozonation for lipid extraction: A preliminary study. AIP Conference Proceedings, 2018, , .	0.3	1
133	Evaluation of photocatalytic fuel cell (PFC) for electricity production and simultaneous degradation of methyl green in synthetic and real greywater effluents. Journal of Environmental Management, 2018, 228, 383-392.	3.8	51
134	Evaluation of Different Oxidizing Agents on Effective Covalent Functionalization of Multiwalled Carbon Nanotubes. Fullerenes Nanotubes and Carbon Nanostructures, 2018, 26, 846-850.	1.0	18
135	Insights into the Electrocatalytic Hydrogen Evolution Reaction Mechanism on Twoâ€Dimensional Transitionâ€Metal Carbonitrides (MXene). Chemistry - A European Journal, 2018, 24, 18479-18486.	1.7	87
136	An overview on conversion technologies to produce value added products from CH4 and CO2 as major biogas constituents. Renewable and Sustainable Energy Reviews, 2018, 98, 56-63.	8.2	74
137	High photoluminescence quantum yield of 18.7% by using nitrogen-doped Ti ₃ C ₂ MXene quantum dots. Journal of Materials Chemistry C, 2018, 6, 6360-6369.	2.7	159
138	Transfer of wafer-scale graphene onto arbitrary substrates: steps towards the reuse and recycling of the catalyst. 2D Materials, 2018, 5, 042001.	2.0	7
139	Visible light responsive flower-like ZnO in photocatalytic antibacterial mechanism towards Enterococcus faecalis and Micrococcus luteus. Journal of Photochemistry and Photobiology B: Biology, 2018, 187, 66-75.	1.7	52
140	Toward high production of graphene flakes – a review on recent developments in their synthesis methods and scalability. Journal of Materials Chemistry A, 2018, 6, 15010-15026.	5.2	63
141	Co-synthesis of large-area graphene and syngas via CVD method from greenhouse gases. Materials Letters, 2018, 227, 132-135.	1.3	9
142	Understanding the performance and mechanism of Mg-containing oxides as support catalysts in the thermal dry reforming of methane. Beilstein Journal of Nanotechnology, 2018, 9, 1162-1183.	1.5	8
143	Unravelling the electrochemical mechanisms for nitrogen fixation on single transition metal atoms embedded in defective graphitic carbon nitride. Journal of Materials Chemistry A, 2018, 6, 21941-21948.	5.2	161
144	Facile fabrication of hierarchical porous ZnO/Fe3O4 composites with enhanced magnetic, photocatalytic and antibacterial properties. Materials Letters, 2018, 228, 207-211.	1.3	27

#	Article	IF	Citations
145	Kinetic modeling of hydrogen production rate by photoautotrophic cyanobacterium A. variabilis ATCC 29413 as a function of both CO2 concentration and oxygen production rate. Preparative Biochemistry and Biotechnology, 2017, 47, 111-115.	1.0	0
146	Modeling the light attenuation phenomenon during photoautotrophic growth of <i>A. variabilis</i> <scp>ATCC</scp> 29413 in a batch photobioreactor. Journal of Chemical Technology and Biotechnology, 2017, 92, 358-366.	1.6	8
147	Polyacrylamide-induced coagulation process removing suspended solids from palm oil mill effluent. Separation Science and Technology, 2017, 52, 520-527.	1.3	34
148	Heteroatom Nitrogen- and Boron-Doping as a Facile Strategy to Improve Photocatalytic Activity of Standalone Reduced Graphene Oxide in Hydrogen Evolution. ACS Applied Materials & Samp; Interfaces, 2017, 9, 4558-4569.	4.0	128
149	Harnessing Vis–NIR broad spectrum for photocatalytic CO2 reduction over carbon quantum dots-decorated ultrathin Bi2WO6 nanosheets. Nano Research, 2017, 10, 1720-1731.	5.8	135
150	Review of the synthesis, transfer, characterization and growth mechanisms of single and multilayer graphene. RSC Advances, 2017, 7, 15644-15693.	1.7	263
151	A newly emerging visible light-responsive BiFeO 3 perovskite for photocatalytic applications: A mini review. Materials Research Bulletin, 2017, 90, 15-30.	2.7	151
152	Visible light responsive TiO 2 nanoparticles modified using Ce and La for photocatalytic reduction of CO 2: Effect of Ce dopant content. Applied Catalysis A: General, 2017, 537, 111-120.	2.2	75
153	Investigation on cobalt aluminate as an oxygen carrier catalyst for dry reforming of methane. International Journal of Hydrogen Energy, 2017, 42, 28363-28376.	3.8	28
154	High-rate synthesis of graphene by a lower cost chemical vapor deposition route. Journal of Nanoparticle Research, 2017, $19, 1$.	0.8	11
155	Direct growth of graphene on MgO by chemical vapor deposition for thermal conductivity enhancement of phase change material. Materials Chemistry and Physics, 2017, 202, 352-357.	2.0	36
156	Understanding of Electrochemical Mechanisms for CO ₂ Capture and Conversion into Hydrocarbon Fuels in Transition-Metal Carbides (MXenes). ACS Nano, 2017, 11, 10825-10833.	7.3	359
157	Dilute sulfuric acid hydrolysis of red macroalgae Eucheuma denticulatum with microwave-assisted heating for biochar production and sugar recovery. Bioresource Technology, 2017, 246, 20-27.	4.8	50
158	Hierarchical ZnIn ₂ S ₄ /MoSe ₂ Nanoarchitectures for Efficient Nobleâ€Metalâ€Free Photocatalytic Hydrogen Evolution under Visible Light. ChemSusChem, 2017, 10, 4624-4631.	3.6	140
159	Ni ₁₂ P ₅ nanoparticles embedded into porous g-C ₃ N ₄ nanosheets as a noble-metal-free hetero-structure photocatalyst for efficient H ₂ production under visible light. Journal of Materials Chemistry A, 2017, 5, 16171-16178.	5.2	183
160	Direct Chemical Vapor Deposition Growth of Graphene Nanosheets on Supported Copper Oxide. Catalysis Letters, 2017, 147, 1988-1997.	1.4	6
161	Photocatalytic reduction of CO 2 with H 2 O over graphene oxide-supported oxygen-rich TiO 2 hybrid photocatalyst under visible light irradiation: Process and kinetic studies. Chemical Engineering Journal, 2017, 308, 248-255.	6.6	141
162	Biogas reforming over multi walled carbon nanotubes with Co-Mo/MgO nanoparticles. AIP Conference Proceedings, 2017, , .	0.3	0

#	Article	IF	CITATIONS
163	Non-wood Lignocellulosic Biomass for Cellulosic Ethanol Production: Effects of Pretreatment on Chemical Composition in Relation to Total Glucose Yield. Nihon Enerugi Gakkaishi/Journal of the Japan Institute of Energy, 2017, 96, 503-508.	0.2	3
164	Biochars as Potential Adsorbers of CH4, CO2 and H2S. Sustainability, 2017, 9, 121.	1.6	68
165	Dual Role of <i>Chlorella vulgaris</i> in Wastewater Treatment for Biodiesel Production: Growth Optimization and Nutrients Removal Study. Nihon Enerugi Gakkaishi/Journal of the Japan Institute of Energy, 2017, 96, 290-299.	0.2	10
166	Surfactant-free hydrothermal synthesis of flower-like BiOBr hierarchical structure and its visible light-driven catalytic activity towards the degradation of sunset yellow. Journal of Materials Science: Materials in Electronics, 2017, 28, 13236-13246.	1.1	11
167	CO ₂ Adsorption by Modified Palm Shell Activated Carbon (PSAC) Via Chemical and Physical Activation and Metal Impregnation. Chemical Engineering Communications, 2016, 203, 1455-1463.	1.5	23
168	Graphitic Carbon Nitride (g-C ₃ N ₄)-Based Photocatalysts for Artificial Photosynthesis and Environmental Remediation: Are We a Step Closer To Achieving Sustainability?. Chemical Reviews, 2016, 116, 7159-7329.	23.0	5,505
169	Ca(OH) ₂ nano-pods: investigation on the effect of solvent ratio on morphology and CO ₂ adsorption capacity. RSC Advances, 2016, 6, 36031-36038.	1.7	10
170	Simultaneous growth of monolayer graphene on Ni–Cu bimetallic catalyst by atmospheric pressure CVD process. RSC Advances, 2016, 6, 41447-41452.	1.7	2
171	Oxygenâ€Deficient BiOBr as a Highly Stable Photocatalyst for Efficient CO ₂ Reduction into Renewable Carbonâ€Neutral Fuels. ChemCatChem, 2016, 8, 3074-3081.	1.8	120
172	Carbon modified anatase TiO2 for the rapid photo degradation of methylene blue: A comparative study. Surfaces and Interfaces, 2016, 5, 19-29.	1.5	23
173	Oxygen vacancy induced Bi ₂ WO ₆ for the realization of photocatalytic CO ₂ reduction over the full solar spectrum: from the UV to the NIR region. Chemical Communications, 2016, 52, 14242-14245.	2.2	248
174	Functionalized Multi-Walled Carbon Nanotubes as Heterogeneous Lewis Acid Catalysts in the Etherification Reaction of <i>tert</i> -Butyl Alcohol and Ethanol. Chemical Engineering Communications, 2016, 203, 1385-1394.	1.5	1
175	Mechanisms of graphene fabrication through plasma-induced layer-by-layer thinning. Carbon, 2016, 105, 496-509.	5.4	27
176	High surface area activated carbon from rice husk as a high performance supercapacitor electrode. Electrochimica Acta, 2016, 192, 110-119.	2.6	384
177	Development of high porosity structures of activated carbon via microwave-assisted regeneration for H2S removal. Journal of Environmental Chemical Engineering, 2016, 4, 4839-4845.	3.3	14
178	A review on photocatalytic application of g-C3N4/semiconductor (CNS) nanocomposites towards the erasure of dyeing wastewater. Materials Science in Semiconductor Processing, 2016, 47, 62-84.	1.9	178
179	Fabrication of ZnO nanorods via a green hydrothermal method and their light driven catalytic activity towards the erasure of phenol compounds. Materials Letters, 2016, 167, 141-144.	1.3	30
180	Investigation of the links between heterocyst and biohydrogen production by diazotrophic cyanobacterium A. variabilis ATCC 29413. Archives of Microbiology, 2016, 198, 101-113.	1.0	5

#	Article	IF	CITATIONS
181	Improved CO ₂ adsorption capacity and cyclic stability of CaO sorbents incorporated with MgO. New Journal of Chemistry, 2016, 40, 231-237.	1.4	40
182	Comparison of different process strategies for bioethanol production from Eucheuma cottonii: An economic study. Bioresource Technology, 2016, 199, 336-346.	4.8	27
183	Sequential synthesis of free-standing high quality bilayer graphene from recycled nickel foil. Carbon, 2016, 96, 268-275.	5.4	32
184	Enhancement in the photocatalytic activity of carbon nitride through hybridization with light-sensitive AgCl for carbon dioxide reduction to methane. Catalysis Science and Technology, 2016, 6, 744-754.	2.1	50
185	Visible-light-activated oxygen-rich TiO2 as next generation photocatalyst: Importance of annealing temperature on the photoactivity toward reduction of carbon dioxide. Chemical Engineering Journal, 2016, 283, 1254-1263.	6.6	66
186	Heterostructured AgX/g-C3N4 (X = Cl and Br) nanocomposites via a sonication-assisted deposition-precipitation approach: Emerging role of halide ions in the synergistic photocatalytic reduction of carbon dioxide. Applied Catalysis B: Environmental, 2016, 180, 530-543.	10.8	277
187	An efficient Ag ₂ SO ₄ -deposited ZnO in photocatalytic removal of indigo carmine and phenol under outdoor light irradiation. Desalination and Water Treatment, 2016, 57, 14227-14240.	1.0	12
188	Solvent-Free MgO-Functionalized Mesoporous Catalysts for Jatropha Oil Transesterification. Journal of Nanotechnology, 2015, 2015, 1-7.	1.5	1
189	Visible-light-active oxygen-rich TiO2 decorated 2D graphene oxide with enhanced photocatalytic activity toward carbon dioxide reduction. Applied Catalysis B: Environmental, 2015, 179, 160-170.	10.8	149
190	Effects of sodium precursors and gelling agents on CO ₂ sorption performance of sodium zirconate. Asia-Pacific Journal of Chemical Engineering, 2015, 10, 565-579.	0.8	7
191	Sol–gel hydrothermal synthesis of microstructured CaO-based adsorbents for CO ₂ capture. RSC Advances, 2015, 5, 6051-6060.	1.7	16
192	Catalytic Etherification of Glycerol to Diglycerol Over Heterogeneous Calcium-Based Mixed-Oxide Catalyst: Reusability and Stability. Chemical Engineering Communications, 2015, 202, 1397-1405.	1.5	10
193	One-pot synthesis of Ag-MWCNT@TiO2 core–shell nanocomposites for photocatalytic reduction of CO2 with water under visible light irradiation. Chemical Engineering Journal, 2015, 278, 272-278.	6.6	72
194	Recent development in catalytic technologies for methanol synthesis from renewable sources: A critical review. Renewable and Sustainable Energy Reviews, 2015, 44, 508-518.	8.2	175
195	Solid acid catalysts pretreatment and enzymatic hydrolysis of macroalgae cellulosic residue for the production of bioethanol. Carbohydrate Polymers, 2015, 124, 311-321.	5.1	42
196	Enhanced Evaporation Strength through Fast Water Permeation in Graphene-Oxide Deposition. Scientific Reports, 2015, 5, 11896.	1.6	36
197	The effects of process parameters on carbon dioxide reforming of methane over Co–Mo–MgO/MWCNTs nanocomposite catalysts. Fuel, 2015, 158, 129-138.	3.4	36
198	Sunlight responsive WO 3 /ZnO nanorods for photocatalytic degradation and mineralization of chlorinated phenoxyacetic acid herbicides in water. Journal of Colloid and Interface Science, 2015, 450, 34-44.	5 . O	94

#	Article	IF	CITATIONS
199	Preface. Bioresource Technology, 2015, 188, 1.	4.8	О
200	Surfactant-free precipitation synthesis of lithium-doped ZnO nanopetals for degradation of phenol under UV–visible light. Materials Letters, 2015, 154, 5-7.	1.3	9
201	Pangium edule Reinw: A Promising Non-edible Oil Feedstock for Biodiesel Production. Arabian Journal for Science and Engineering, 2015, 40, 583-594.	1.1	47
202	Preparation of self-supported crystalline merlinoite-type zeolite W membranes through vacuum filtration and crystallization for CO ₂ /CH ₄ separations. New Journal of Chemistry, 2015, 39, 4135-4140.	1.4	9
203	Surface charge modification via protonation of graphitic carbon nitride (g-C3N4) for electrostatic self-assembly construction of 2D/2D reduced graphene oxide (rGO)/g-C3N4 nanostructures toward enhanced photocatalytic reduction of carbon dioxide to methane. Nano Energy, 2015, 13, 757-770.	8.2	718
204	Optimization and kinetic studies of sea mango (Cerbera odollam) oil for biodiesel production via supercritical reaction. Energy Conversion and Management, 2015, 99, 242-251.	4.4	48
205	Biomass-based palm shell activated carbon and palm shell carbon molecular sieve as gas separation adsorbents. Waste Management and Research, 2015, 33, 303-312.	2.2	28
206	Advances in CO 2 gasification reactivity of biomass char through utilization of radio frequency irradiation. Energy, 2015, 93, 976-983.	4.5	13
207	Preparation of cerium-doped ZnO hierarchical micro/nanospheres with enhanced photocatalytic performance for phenol degradation under visible light. Journal of Molecular Catalysis A, 2015, 409, 1-10.	4.8	77
208	Kinetic studies of sea mango (Cerbera odollam) oil for biodiesel production via injection of superheated methanol vapour technology. Energy Conversion and Management, 2015, 105, 1213-1222.	4.4	16
209	Non-Catalytic and Catalytic Transesterification: A Reaction Kinetics Comparison Study. International Journal of Green Energy, 2015, 12, 551-558.	2.1	7
210	Noble metal modified reduced graphene oxide/TiO2 ternary nanostructures for efficient visible-light-driven photoreduction of carbon dioxide into methane. Applied Catalysis B: Environmental, 2015, 166-167, 251-259.	10.8	196
211	Graphene oxide as a structure-directing agent for the two-dimensional interface engineering of sandwich-like graphene–g-C ₃ N ₄ hybrid nanostructures with enhanced visible-light photoreduction of CO ₂ to methane. Chemical Communications, 2015, 51, 858-861.	2.2	393
212	Surfactant-free solvothermal synthesis of ZnO nanorods for effective sunlight degradation of 2,4-dichlorophenol. Materials Letters, 2015, 140, 51-54.	1.3	11
213	Heterojunction engineering of graphitic carbon nitride (g-C ₃ N ₄) via Pt loading with improved daylight-induced photocatalytic reduction of carbon dioxide to methane. Dalton Transactions, 2015, 44, 1249-1257.	1.6	307
214	Deoxygenation of fatty acid to produce diesel-like hydrocarbons: A review of process conditions, reaction kinetics and mechanism. Renewable and Sustainable Energy Reviews, 2015, 42, 1223-1233.	8.2	154
215	Immobilization of \hat{l}^2 -glucosidase from Aspergillus niger on \hat{l}^9 -carrageenan hybrid matrix and its application on the production of reducing sugar from macroalgae cellulosic residue. Bioresource Technology, 2015, 184, 386-394.	4.8	48
216	Preparation of flower-like ZnO hierarchical structures for photodegradation of phenol under UV irradiation. Research on Chemical Intermediates, 2015, 41, 2489-2502.	1.3	12

#	Article	IF	CITATIONS
217	Conversion of the greenhouse gas CO2 to the fuel gas CO via the Boudouard reaction: A review. Renewable and Sustainable Energy Reviews, 2015, 41, 615-632.	8.2	295
218	Kinetic Studies on Fermentative Production of Biofuel from Synthesis Gas Using <i>Clostridium ljungdahlii</i> . Scientific World Journal, The, 2014, 2014, 1-8.	0.8	38
219	Photocatalytic TiO ₂ /Carbon Nanotube Nanocomposites for Environmental Applications: An Overview and Recent Developments. Fullerenes Nanotubes and Carbon Nanostructures, 2014, 22, 471-509.	1.0	43
220	Study on the Reusability of Multiwalled Carbon Nanotubes in Biodegradable Chitosan Nanocomposites. Polymer-Plastics Technology and Engineering, 2014, 53, 1236-1250.	1.9	10
221	Esterification of hydrolyzed sea mango (Cerbera odollam) oil using various cationic ion exchange resins. Energy Science and Engineering, 2014, 2, 31-38.	1.9	6
222	Synergistic effect of graphene as a co-catalyst for enhanced daylight-induced photocatalytic activity of Zn _{0.5} Cd _{0.5} S synthesized via an improved one-pot co-precipitation-hydrothermal strategy. RSC Advances, 2014, 4, 59676-59685.	1.7	61
223	Novel MWCNT-buckypaper/polyvinyl alcohol asymmetric membrane for dehydration of etherification reaction mixture: Fabrication, characterisation and application. Journal of Membrane Science, 2014, 453, 546-555.	4.1	28
224	Ultrasonic-Assisted Extraction of α-Tocopherol Antioxidants from the Fronds of Elaeis guineensis Jacq.: Optimization, Kinetics, and Thermodynamic Studies. Food Analytical Methods, 2014, 7, 257-267.	1.3	8
225	Synthesis and characterization of graphene and carbon nanotubes: A review on the past and recent developments. Journal of Industrial and Engineering Chemistry, 2014, 20, 1171-1185.	2.9	307
226	Enhanced sunlight photocatalytic performance over Nb2O5/ZnO nanorod composites and the mechanism study. Applied Catalysis A: General, 2014, 471, 126-135.	2.2	108
227	Mechanisms of graphene growth by chemical vapour deposition on transition metals. Carbon, 2014, 70, 1-21.	5.4	284
228	Recent development and economic analysis of glycerol-free processes via supercritical fluid transesterification for biodiesel production. Renewable and Sustainable Energy Reviews, 2014, 31, 61-70.	8.2	69
229	Preparation of rare earth-doped ZnO hierarchical micro/nanospheres and their enhanced photocatalytic activity under visible light irradiation. Ceramics International, 2014, 40, 5431-5440.	2.3	109
230	Capture of carbon dioxide from flue/fuel gas using dolomite under microwave irradiation. Chemical Engineering Journal, 2014, 240, 169-178.	6.6	13
231	Facetâ€Dependent Photocatalytic Properties of TiO ₂ â€Based Composites for Energy Conversion and Environmental Remediation. ChemSusChem, 2014, 7, 690-719.	3.6	307
232	Refractory dopant-incorporated CaO from waste eggshell as sustainable sorbent for CO2 capture: Experimental and kinetic studies. Chemical Engineering Journal, 2014, 243, 455-464.	6.6	64
233	Highly reactive {001} facets of TiO2-based composites: synthesis, formation mechanism and characterization. Nanoscale, 2014, 6, 1946.	2.8	412
234	Sunlight photocatalytic activity enhancement and mechanism of novel europium-doped ZnO hierarchical micro/nanospheres for degradation of phenol. Applied Catalysis B: Environmental, 2014, 148-149, 258-268.	10.8	150

#	Article	IF	CITATIONS
235	An overview: synthesis of thin films/membranes of metal organic frameworks and its gas separation performances. RSC Advances, 2014, 4, 54322-54334.	1.7	65
236	Continuous polycrystalline ZIF-8 membrane supported on CO ₂ -selective mixed matrix supports for CO ₂ /CH ₄ separation. RSC Advances, 2014, 4, 52461-52466.	1.7	14
237	Enhanced Daylight-Induced Photocatalytic Activity of Solvent Exfoliated Graphene (SEG)/ZnO Hybrid Nanocomposites toward Degradation of Reactive Black 5. Industrial & Engineering Chemistry Research, 2014, 53, 17333-17344.	1.8	79
238	Band gap engineered, oxygen-rich TiO2 for visible light induced photocatalytic reduction of CO2. Chemical Communications, 2014, 50, 6923.	2.2	90
239	Visible-light-driven MWCNT@TiO ₂ core–shell nanocomposites and the roles of MWCNTs on the surface chemistry, optical properties and reactivity in CO ₂ photoreduction. RSC Advances, 2014, 4, 24007-24013.	1.7	43
240	Modification of MWCNT@TiO2 core–shell nanocomposites with transition metal oxide dopants for photoreduction of carbon dioxide into methane. Applied Surface Science, 2014, 319, 37-43.	3.1	33
241	Self-assembly of nitrogen-doped TiO2 with exposed {001} facets on a graphene scaffold as photo-active hybrid nanostructures for reduction of carbon dioxide to methane. Nano Research, 2014, 7, 1528-1547.	5.8	236
242	The synthesis and characterization of high purity mixed microporous/mesoporous activated carbon from rice husk using chemical activation with NaOH and KOH. Microporous and Mesoporous Materials, 2014, 197, 316-323.	2.2	267
243	Microwave-enhanced CO2 gasification of oil palm shell char. Bioresource Technology, 2014, 158, 193-200.	4.8	79
244	An enhanced hybrid membrane of ZIF-8 and zeolite T for CO2/CH4 separation. CrystEngComm, 2014, 16, 3072-3075.	1.3	12
245	Direct use of as-synthesized multi-walled carbon nanotubes for carbon dioxide reforming of methane for producing synthesis gas. Chemical Engineering Journal, 2014, 257, 200-208.	6.6	40
246	Transition metal oxide loaded ZnO nanorods: Preparation, characterization and their UV–vis photocatalytic activities. Separation and Purification Technology, 2014, 132, 378-387.	3.9	76
247	Enhanced visible light responsive MWCNT/TiO2 core–shell nanocomposites as the potential photocatalyst for reduction of CO2 into methane. Solar Energy Materials and Solar Cells, 2014, 122, 183-189.	3.0	97
248	Synthesis and performance of microporous inorganic membranes for CO2 separation: a review. Journal of Porous Materials, 2013, 20, 1457-1475.	1.3	34
249	Sustainable utilization of oil palm wastes for bioactive phytochemicals for the benefit of the oil palm and nutraceutical industries. Phytochemistry Reviews, 2013, 12, 173-190.	3.1	68
250	Parametric Study of Methane Catalytic CVD into Singleâ€walled Carbon Nanotubes Using Spinâ€coated Iron Nanoparticles. Chemical Vapor Deposition, 2013, 19, 53-60.	1.4	4
251	Preparation and photocatalytic properties of visible light-driven samarium-doped ZnO nanorods. Ceramics International, 2013, 39, 5833-5843.	2.3	144
252	Photocatalytic performance of novel samarium-doped spherical-like ZnO hierarchical nanostructures under visible light irradiation for 2,4-dichlorophenol degradation. Journal of Colloid and Interface Science, 2013, 401, 40-49.	5.0	104

#	Article	IF	CITATIONS
253	Efficient Photodegradation of Endocrine-Disrupting Chemicals with Bi2O3–ZnO Nanorods Under a Compact Fluorescent Lamp. Water, Air, and Soil Pollution, 2013, 224, 1.	1.1	25
254	CO2 gasification reactivity of biomass char: Catalytic influence of alkali, alkaline earth and transition metal salts. Bioresource Technology, 2013, 144, 288-295.	4.8	213
255	Influence of temperature on liquid products yield of oil palm shell via subcritical water liquefaction in the presence of alkali catalyst. Fuel Processing Technology, 2013, 110, 197-205.	3.7	45
256	Fuel Properties of <i>Croton megalocarpus</i> , <i>Calophyllum inophyllum</i> , and <i>Cocos nucifera</i> (coconut) Methyl Esters and their Performance in a Multicylinder Diesel Engine. Energy Technology, 2013, 1, 685-694.	1.8	34
257	Investigation on visible-light photocatalytic degradation of 2,4-dichlorophenoxyacetic acid in the presence of MoO3/ZnO nanorod composites. Journal of Molecular Catalysis A, 2013, 370, 123-131.	4.8	80
258	An overview on global warming in Southeast Asia: CO 2 emission status, efforts done, and barriers. Renewable and Sustainable Energy Reviews, 2013, 28, 71-81.	8.2	90
259	Effective synthesis of carbon nanotubes via catalytic decomposition of methane: Influence of calcination temperature on metal–support interaction of Co–Mo/MgO catalyst. Journal of Physics and Chemistry of Solids, 2013, 74, 1553-1559.	1.9	37
260	ZnO nanorods surface-decorated by WO3 nanoparticles for photocatalytic degradation of endocrine disruptors under a compact fluorescent lamp. Ceramics International, 2013, 39, 2343-2352.	2.3	56
261	EVALUATION OF THE EFFECT OF CATALYST TEXTURAL PROPERTIES ON EFFECTIVE SYNTHESIS OF CARBON NANOTUBES. International Journal of Nanoscience, 2013, 12, 1350030.	0.4	0
262	Synthesis of activated carbon from lignocellulosic biomass and its applications in air pollution controlâ€"a review. Journal of Environmental Chemical Engineering, 2013, 1, 658-666.	3.3	310
263	Reduced graphene oxide-TiO2 nanocomposite as a promising visible-light-active photocatalyst for the conversion of carbon dioxide. Nanoscale Research Letters, 2013, 8, 465.	3.1	323
264	Effect of operating conditions towards simultaneous removal of SO2 and NO using copper modified rice husk ash: Role as sorbent and catalyst. Journal of Environmental Chemical Engineering, 2013, 1, 755-761.	3.3	8
265	Self-assembly fabrication of ZnO hierarchical micro/nanospheres for enhanced photocatalytic degradation of endocrine-disrupting chemicals. Materials Science in Semiconductor Processing, 2013, 16, 1542-1550.	1.9	48
266	Effects of Growth Parameters on the Morphology of Aligned Carbon Nanotubes Synthesized by Floating Catalyst and the Growth Model. Fullerenes Nanotubes and Carbon Nanostructures, 2013, 21, 765-777.	1.0	9
267	Green hydrothermal synthesis of ZnO nanotubes for photocatalytic degradation of methylparaben. Materials Letters, 2013, 93, 423-426.	1.3	41
268	Identification of the Effect of Cobalt Contents on Effective Synthesis of Carbon Nanotubes from Methane Decomposition. Fullerenes Nanotubes and Carbon Nanostructures, 2013, 21, 75-87.	1.0	7
269	Catalytic Decomposition of Methane to Carbon Nanotubes and Hydrogen: The Effect of Metal Loading on the Activity of CoO-MoO/Al ₂ O ₃ Catalyst. Fullerenes Nanotubes and Carbon Nanostructures, 2013, 21, 158-170.	1.0	13
270	Growth of uniform thin-walled carbon nanotubes with spin-coated Fe catalyst and the correlation between the pre-growth catalyst size and the nanotube diameter. Journal of Nanoparticle Research, 2013, 15, 1.	0.8	11

#	Article	IF	CITATIONS
271	Growth of carbon nanotubes over non-metallic based catalysts: A review on the recent developments. Catalysis Today, 2013, 217, 1-12.	2.2	37
272	Control of iron nanoparticle size by manipulating PEG–ethanol colloidal solutions and spin-coating parameters for the growth of single-walled carbon nanotubes. Particuology, 2013, 11, 394-400.	2.0	15
273	Ash of palm empty fruit bunch as a natural catalyst for promoting the CO2 gasification reactivity of biomass char. Bioresource Technology, 2013, 132, 351-355.	4.8	46
274	Co-gasification of tire and biomass for enhancement of tire-char reactivity in CO2 gasification process. Bioresource Technology, 2013, 138, 124-130.	4.8	82
275	Direct growth of carbon nanotubes on Ni/TiO2 as next generation catalysts for photoreduction of CO2 to methane by water under visible light irradiation. RSC Advances, 2013, 3, 4505.	1.7	157
276	Amineâ€functionalization of multiâ€walled carbon nanotubes for adsorption of carbon dioxide. Asia-Pacific Journal of Chemical Engineering, 2013, 8, 262-270.	0.8	5
277	Evolution towards the utilisation of functionalised carbon nanotubes as a new generation catalyst support in biodiesel production: an overview. RSC Advances, 2013, 3, 9070.	1.7	59
278	A review on the evolution of ethyl tert-butyl ether (ETBE) and its future prospects. Renewable and Sustainable Energy Reviews, 2013, 22, 604-620.	8.2	78
279	Multi-walled carbon nanotubes modified with (3-aminopropyl)triethoxysilane for effective carbon dioxide adsorption. International Journal of Greenhouse Gas Control, 2013, 14, 65-73.	2.3	91
280	Degrading two endocrine-disrupting chemicals from water by UV irradiation with the presence of nanophotocatalysts. Desalination and Water Treatment, 2013, 51, 3505-3520.	1.0	13
281	Fabrication of erbium-doped spherical-like ZnO hierarchical nanostructures with enhanced visible light-driven photocatalytic activity. Materials Letters, 2013, 91, 1-4.	1.3	52
282	Synthesis of Single-Walled Carbon Nanotubes: Effects of Active Metals, Catalyst Supports, and Metal Loading Percentage. Journal of Nanomaterials, 2013, 2013, 1-8.	1.5	26
283	Carbon Dioxide Conversion Over Carbon-Based Nanocatalysts. Journal of Nanoscience and Nanotechnology, 2013, 13, 4825-4837.	0.9	22
284	Photocatalytic degradation of resorcinol, an endocrine disrupter, by TiO2and ZnO suspensions. Environmental Technology (United Kingdom), 2013, 34, 1097-1106.	1.2	40
285	Morphological and Structural Studies of Titanate and Titania Nanostructured Materials Obtained after Heat Treatments of Hydrothermally Produced Layered Titanate. Journal of Nanomaterials, 2012, 2012, 1-10.	1.5	33
286	Degrading Endocrine Disrupting Chemicals from Wastewater by Photocatalysis: A Review. International Journal of Photoenergy, 2012, 2012, 1-23.	1.4	109
287	PRODUCTION OF CARBON NANOTUBES FROM CHEMICAL VAPOR DEPOSITION OF METHANE IN A CONTINUOUS ROTARY REACTOR SYSTEM. Chemical Engineering Communications, 2012, 199, 600-607.	1.5	15
288	Energy and environmental applications of carbon nanotubes. Environmental Chemistry Letters, 2012, 10, 265-273.	8.3	125

#	Article	IF	CITATIONS
289	Conventional processes and membrane technology for carbon dioxide removal from natural gas: A review. Journal of Natural Gas Chemistry, 2012, 21, 282-298.	1.8	150
290	Effects of functionalization conditions of sulfonic acid grafted SBA-15 on catalytic activity in the esterification of glycerol to monoglyceride: a factorial design approach. Journal of Porous Materials, 2012, 19, 835-846.	1.3	15
291	Global warming mitigation and renewable energy policy development from the Kyoto Protocol to the Copenhagen Accordâ€"A comment. Renewable and Sustainable Energy Reviews, 2012, 16, 5280-5284.	8.2	174
292	Heterogeneous catalysts for production of chemicals using carbon dioxide as raw material: A review. Renewable and Sustainable Energy Reviews, 2012, 16, 4951-4964.	8.2	137
293	Catalytic effect of iron species on CO2 gasification reactivity of oil palm shell char. Thermochimica Acta, 2012, 546, 24-31.	1.2	49
294	Growth of carbon nanotubes on Si/SiO2 wafer etched by hydrofluoric acid under different etching durations. Applied Surface Science, 2012, 258, 5774-5777.	3.1	3
295	The role of water vapor in carbon nanotube formation via water-assisted chemical vapor deposition of methane. Journal of Industrial and Engineering Chemistry, 2012, 18, 1504-1511.	2.9	15
296	Synthesis and Applications of Grapheneâ€Based TiO ₂ Photocatalysts. ChemSusChem, 2012, 5, 1868-1882.	3.6	226
297	Utilization of compressed natural gas for the production of carbon nanotubes. Journal of Natural Gas Chemistry, 2012, 21, 620-624.	1.8	6
298	Current status and challenges on microalgae-based carbon capture. International Journal of Greenhouse Gas Control, 2012, 10, 456-469.	2.3	293
299	Degradation of wastewaters containing organic dyes photocatalysed by zinc oxide: a review. Desalination and Water Treatment, 2012, 41, 131-169.	1.0	359
300	Hydrothermal treatment of fluorinated titanium dioxide: photocatalytic degradation of phenol. Asia-Pacific Journal of Chemical Engineering, 2012, 7, 877-885.	0.8	11
301	Optimisation of reaction conditions for the synthesis of singleâ€walled carbon nanotubes using response surface methodology. Canadian Journal of Chemical Engineering, 2012, 90, 489-505.	0.9	18
302	Carbon Nanotubes Applications: Solar and Fuel Cells, Hydrogen Storage, Lithium Batteries, Supercapacitors, Nanocomposites, Gas, Pathogens, Dyes, Heavy Metals and Pesticides. Environmental Chemistry for A Sustainable World, 2012, , 3-46.	0.3	13
303	Synthesis of single-walled carbon nanotubes over a spin-coated Fe catalyst in an ethanol–PEG colloidal solution. Carbon, 2012, 50, 960-967.	5.4	21
304	Hydrocracking of residual oil using molybdenum supported over mesoporous alumina as a catalyst. Chemical Engineering Journal, 2012, 181-182, 717-724.	6.6	49
305	Post-combustion carbon dioxide capture: Evolution towards utilization of nanomaterials. Renewable and Sustainable Energy Reviews, 2012, 16, 2599-2609.	8.2	137
306	Sustainable ethanol fermentation from synthesis gas by <i>Clostridium ljungdahlii</i> in a continuous stirred tank bioreactor. Journal of Chemical Technology and Biotechnology, 2012, 87, 837-843.	1.6	110

#	Article	IF	CITATIONS
307	Catalytic inorganic membrane reactors: present research and future prospects. Reviews in Chemical Engineering, $2011, 27, \ldots$	2.3	15
308	Effects of Temperature on the Synthesis of Carbon Nanotubes by FeCl ₃ as a Floating Catalyst Precursor. Fullerenes Nanotubes and Carbon Nanostructures, 2011, 19, 575-583.	1.0	6
309	Nanocrystalline Zeolite Y: Synthesis and Characterization. IOP Conference Series: Materials Science and Engineering, 2011, 17, 012030.	0.3	24
310	Roles of titanium dioxide and ion-doped titanium dioxide on photocatalytic degradation of organic pollutants (phenolic compounds and dyes) in aqueous solutions: A review. Journal of Alloys and Compounds, 2011, 509, 1648-1660.	2.8	391
311	Preparation of iron oxide nanoparticles supported on magnesium oxide for producing high-quality single-walled carbon nanotubes. New Carbon Materials, 2011, 26, 255-261.	2.9	20
312	Photocatalytic Degradation of Phenol Using ImmobilizedTiO2Nanotube Photocatalysts. Journal of Nanotechnology, 2011, 2011, 1-9.	1.5	12
313	Bioconversion of synthesis gas to second generation biofuels: A review. Renewable and Sustainable Energy Reviews, 2011, 15, 4255-4273.	8.2	215
314	A parametric study of methane decomposition into carbon nanotubes over 8Co-2Mo/Al2O3 catalyst. Journal of Natural Gas Chemistry, 2011, 20, 84-89.	1.8	23
315	Production of biofuel from waste cooking palm oil using nanocrystalline zeolite as catalyst: Process optimization studies. Bioresource Technology, 2011, 102, 10686-10694.	4.8	74
316	Synthesis of monoglyceride through glycerol esterification with lauric acid over propyl sulfonic acid post-synthesis functionalized SBA-15 mesoporous catalyst. Chemical Engineering Journal, 2011, 174, 668-676.	6.6	73
317	Preparation and characterization of La0.6Sr0.4Co0.2Fe0.8O3-δthin-film membrane on porous support by dip-coating method. Journal of Sol-Gel Science and Technology, 2011, 59, 505-512.	1.1	0
318	Nanocrystalline zeolite beta and zeolite Y as catalysts in used palm oil cracking for the production of biofuel. Journal of Nanoparticle Research, 2011, 13, 3177-3189.	0.8	57
319	Optimizing photocatalytic degradation of phenol by TiO2/GAC using response surface methodology. Korean Journal of Chemical Engineering, 2011, 28, 84-92.	1.2	49
320	Response to "Comment on a glycerol-free process to produce biodiesel by supercritical methyl acetate technology: An optimization study via response surface methodology†Bioresource Technology, 2011, 102, 3990-3991.	4.8	2
321	Synthesis of aligned carbon nanotubes. Carbon, 2011, 49, 4613-4635.	5.4	133
322	Pretreatment of lignocellulosic palm biomass using a solvent-ionic liquid [BMIM]Cl for glucose recovery: An optimisation study using response surface methodology. Carbohydrate Polymers, 2011, 83, 1862-1868.	5.1	124
323	Synthesis of carbon nanotubes by methane decomposition over Co–Mo/Al2O3: Process study and optimization using response surface methodology. Applied Catalysis A: General, 2011, 396, 52-58.	2.2	42
324	Prospects of non-catalytic supercritical methyl acetate process in biodiesel production. Fuel Processing Technology, 2011, 92, 1905-1909.	3.7	45

#	Article	IF	Citations
325	A review on the formation of titania nanotube photocatalysts by hydrothermal treatment. Journal of Environmental Management, 2011, 92, 1669-1680.	3.8	161
326	Sorption of SO2 and NO from simulated flue gas over rice husk ash (RHA)/CaO/CeO2 sorbent: Evaluation of deactivation kinetic parameters. Journal of Hazardous Materials, 2011, 185, 1609-1613.	6.5	18
327	Synthesis of single-walled carbon nanotubes by chemical vapor deposition using sodium chloride support. Physica E: Low-Dimensional Systems and Nanostructures, 2011, 43, 1011-1014.	1.3	6
328	The effect of carbon precursors (methane, benzene and camphor) on the quality of carbon nanotubes synthesised by the chemical vapour decomposition. Physica E: Low-Dimensional Systems and Nanostructures, 2011, 43, 1535-1542.	1.3	23
329	An Overview on the Photocatalytic Activity of Nano-Doped- <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mtext>TiO</mml:mtext><mml:mn mathvariant="bold">2</mml:mn></mml:msub></mml:math> in the Degradation of Organic Pollutants. ISRN Materials Science. 2011. 2011. 1-18.	1.0	94
330	Flue Gas Desulphurization at Low Temperatures Using Coal Fly Ash/Ca-Based Sorbent: Determination of Rate Limiting Step. Journal of Advanced Chemical Engineering, 2011, 1, 1-10.	0.1	2
331	Parameter effect on photocatalytic degradation of phenol using TiO2-P25/activated carbon (AC). Korean Journal of Chemical Engineering, 2010, 27, 1109-1116.	1.2	77
332	Homogeneous, heterogeneous and enzymatic catalysis for transesterification of high free fatty acid oil (waste cooking oil) to biodiesel: A review. Biotechnology Advances, 2010, 28, 500-518.	6.0	1,054
333	Recent progress on innovative and potential technologies for glycerol transformation into fuel additives: A critical review. Renewable and Sustainable Energy Reviews, 2010, 14, 987-1000.	8.2	385
334	Preparation of carbon molecular sieve from lignocellulosic biomass: A review. Renewable and Sustainable Energy Reviews, 2010, 14, 1591-1599.	8.2	221
335	Gasification of lignocellulosic biomass in fluidized beds for renewable energy development: A review. Renewable and Sustainable Energy Reviews, 2010, 14, 2852-2862.	8.2	354
336	Characteristics of supported nano-TiO2/ZSM-5/silica gel (SNTZS): Photocatalytic degradation of phenol. Journal of Hazardous Materials, 2010, 174, 299-306.	6.5	90
337	Parameters optimization of rice husk ash (RHA)/CaO/CeO2 sorbent for predicting SO2/NO sorption capacity using response surface and neural network models. Journal of Hazardous Materials, 2010, 178, 249-257.	6.5	17
338	Rice husk ash sorbent doped with copper for simultaneous removal of SO2 and NO: Optimization study. Journal of Hazardous Materials, 2010, 183, 738-745.	6.5	10
339	Optimization of supercritical dimethyl carbonate (SCDMC) technology for the production of biodiesel and value-added glycerol carbonate. Fuel, 2010, 89, 3833-3839.	3.4	57
340	An optimized study of methanol and ethanol in supercritical alcohol technology for biodiesel production. Journal of Supercritical Fluids, 2010, 53, 82-87.	1.6	89
341	Effects of free fatty acids, water content and co-solvent on biodiesel production by supercritical methanol reaction. Journal of Supercritical Fluids, 2010, 53, 88-91.	1.6	122
342	Deactivation and coke combustion studies of nanocrystalline zeolite beta in catalytic cracking of used palm oil. Chemical Engineering Journal, 2010, 163, 413-421.	6.6	36

#	Article	IF	CITATIONS
343	Current status of ceramic-based membranes for oxygen separation from air. Advances in Colloid and Interface Science, 2010, 160, 88-100.	7.0	122
344	Subcritical water liquefaction of oil palm fruit press fiber for the production of bio-oil: Effect of catalysts. Bioresource Technology, 2010, 101, 745-751.	4.8	73
345	A glycerol-free process to produce biodiesel by supercritical methyl acetate technology: An optimization study via Response Surface Methodology. Bioresource Technology, 2010, 101, 965-969.	4.8	139
346	Second-generation bio-ethanol (SGB) from Malaysian palm empty fruit bunch: Energy and exergy analyses. Bioresource Technology, 2010, 101, 5719-5727.	4.8	54
347	Sub/supercritical liquefaction of oil palm fruit press fiber for the production of bio-oil: Effect of solvents. Bioresource Technology, 2010, 101, 7641-7647.	4.8	120
348	IRON (III) CHLORIDE AS FLOATING CATALYST PRECURSOR TO PRODUCE MULTI-WALLED CARBON NANOTUBES FROM METHANE. Nano, 2010, 05, 167-173.	0.5	4
349	Optimization of Carbon Nanotubes Synthesis via Methane Decomposition over Alumina-Based Catalyst. Fullerenes Nanotubes and Carbon Nanostructures, 2010, 18, 273-284.	1.0	16
350	Role of Reaction and Factors of Carbon Nanotubes Growth in Chemical Vapour Decomposition Process Using Methane—A Highlight. Journal of Nanomaterials, 2010, 2010, 1-11.	1.5	13
351	The role of molybdenum in Co-Mo/MgO for large-scale production of high quality carbon nanotubes. Journal of Alloys and Compounds, 2010, 493, 539-543.	2.8	31
352	Removal of Rhodamine B from Aqueous Solution Using Palm Shell-Based Activated Carbon: Adsorption and Kinetic Studies. Journal of Chemical & Engineering Data, 2010, 55, 5777-5785.	1.0	143
353	BIODIESEL PRODUCTION FROM PALM OIL VIA HETEROGENEOUS TRANSESTERIFICATION: OPTIMIZATION STUDY. Chemical Engineering Communications, 2010, 197, 1597-1611.	1.5	19
354	Rice Husk Ash/Calcium Oxide/Ceria Sorbent for Simultaneous Removal of Sulfur Dioxide and Nitric Oxide from Flue Gas at Low Temperature. Environmental Engineering Science, 2009, 26, 1257-1265.	0.8	6
355	Effect of FeOx loaded on CoOx/Al2O3 catalyst for the formation of thin-walled carbon nanotubes. Materials Letters, 2009, 63, 1428-1430.	1.3	8
356	Life cycle assessment for the production of biodiesel: A case study in Malaysia for palm oil versus jatropha oil. Biofuels, Bioproducts and Biorefining, 2009, 3, 601-612.	1.9	97
357	Composites as cracking catalysts in the production of biofuel from palm oil: Deactivation studies. Chemical Engineering Journal, 2009, 155, 347-354.	6.6	26
358	A comparative study on the energy policies in Japan and Malaysia in fulfilling their nations' obligations towards the Kyoto Protocol. Energy Policy, 2009, 37, 4771-4778.	4.2	105
359	Performance of an activated carbon made from waste palm shell in simultaneous adsorption of SO x and NO x of flue gas at low temperature. Science in China Series D: Earth Sciences, 2009, 52, 198-203.	0.9	22
360	Evaluation of various additives on the preparation of rice husk ash (RHA)/CaO-based sorbent for flue gas desulfurization (FGD) at low temperature. Journal of Hazardous Materials, 2009, 161, 570-574.	6.5	33

#	Article	IF	CITATIONS
361	Selection of metal oxides in the preparation of rice husk ash (RHA)/CaO sorbent for simultaneous SO2 and NO removal. Journal of Hazardous Materials, 2009, 166, 1556-1559.	6.5	49
362	Malaysian palm oil: Surviving the food versus fuel dispute for a sustainable future. Renewable and Sustainable Energy Reviews, 2009, 13, 1456-1464.	8.2	208
363	Oxidative coupling of methane (OCM) in a catalytic membrane reactor and comparison of its performance with other catalytic reactors. Chemical Engineering Journal, 2009, 148, 525-532.	6.6	111
364	Sulfated tin oxide as solid superacid catalyst for transesterification of waste cooking oil: An optimization study. Applied Catalysis B: Environmental, 2009, 93, 134-139.	10.8	168
365	Production of FAME by palm oil transesterification via supercritical methanol technology. Biomass and Bioenergy, 2009, 33, 1096-1099.	2.9	88
366	Effects of FeOx, CoOx, and NiO catalysts and calcination temperatures on the synthesis of single-walled carbon nanotubes through chemical vapor deposition of methane. Journal of Alloys and Compounds, 2009, 477, 785-788.	2.8	24
367	Investigations on the effects of CoOx to MoOx ratio and CoOx–MoOx loading on methane decomposition into carbon nanotubes. Journal of Alloys and Compounds, 2009, 488, 294-299.	2.8	9
368	FLOATING CATALYST CVD SYNTHESIS OF CARBON NANOTUBES USING IRON (III) CHLORIDE: INFLUENCES OF THE GROWTH PARAMETERS. Nano, 2009, 04, 359-366.	0.5	8
369	Synthesis of high purity multi-walled carbon nanotubes over Co-Mo/MgO catalyst by the catalytic chemical vapor deposition of methane. New Carbon Materials, 2009, 24, 119-123.	2.9	55
370	BROAD BUNDLES OF SINGLE-WALLED CARBON NANOTUBE SYNTHESIZED OVER Fe2O3/MgO VIA CHEMICAL VAPOR DEPOSITION OF METHANE. Nano, 2009, 04, 77-81.	0.5	6
371	Role of energy policy in renewable energy accomplishment: The case of second-generation bioethanol. Energy Policy, 2008, 36, 3360-3365.	4.2	132
372	Biological hydrogen production from CO: Bioreactor performance. Biochemical Engineering Journal, 2008, 39, 468-477.	1.8	38
373	Biohydrogen production in a continuous stirred tank bioreactor from synthesis gas by anaerobic photosynthetic bacterium: Rhodopirillum rubrum. Bioresource Technology, 2008, 99, 2612-2619.	4.8	93
374	Analysis of SO ₂ Sorption Capacity of Rice Husk Ash (RHA)/CaO/NaOH Sorbents Using Response Surface Methodology (RSM): Untreated and Pretreated RHA. Environmental Science & Technology, 2008, 42, 1499-1504.	4.6	29
375	Flue Gas Desulfurization Using Sorbent Synthesized from Lime (CaO) and Oil Palm Ash (OPA) Derived from Empty Fruit Bunches (EFB): Statistical Design Approach. Environmental Engineering Science, 2007, 24, 769-777.	0.8	6
376	Characteristics of Granular Sludge Developed in an Upflow Anaerobic Sludge Fixedâ€Film Bioreactor Treating Palm Oil Mill Effluent. Water Environment Research, 2007, 79, 833-844.	1.3	13
377	Synthesizing carbon nanotubes and carbon nanofibers over supported-nickel oxide catalysts via catalytic decomposition of methane. Diamond and Related Materials, 2007, 16, 1656-1664.	1.8	44
378	Lifetime and Regeneration Studies of Various Supported TiO ₂ Photocatalysts for the Degradation of Phenol under UV-C Light in a Batch Reactor. Industrial & Degradation of Phenol under UV-C Light in a Batch Reactor. Industrial & Degradation of Phenol under UV-C Light in a Batch Reactor. Industrial & Degradation of Phenol under UV-C Light in a Batch Reactor. Industrial & Degradation of Phenol under UV-C Light in a Batch Reactor. Industrial & Degradation of Phenol under UV-C Light in a Batch Reactor. Industrial & Degradation of Phenol under UV-C Light in a Batch Reactor. Industrial & Degradation of Phenol under UV-C Light in a Batch Reactor. Industrial & Degradation of Phenol under UV-C Light in a Batch Reactor. Industrial & Degradation of Phenol under UV-C Light in a Batch Reactor. Industrial & Degradation of Phenol under UV-C Light in a Batch Reactor. Industrial & Degradation of Phenol under UV-C Light in a Batch Reactor. Industrial & Degradation of Phenol under UV-C Light in a Batch Reactor. Industrial & Degradation of Phenol under UV-C Light in a Batch Reactor. Industrial & Degradation of Phenol under UV-C Light in a Batch Reactor. Industrial & Degradation of Phenol under UV-C Light in a Batch Reactor. Industrial & Degradation of Phenol under UV-C Light in a Batch Reactor. Industrial & Degradation of Phenol under UV-C Light in a Batch Reactor. Industrial & Degradation of Phenol under UV-C Light in a Batch Reactor. Industrial & Degradation of Phenol under UV-C Light in a Batch Reactor. Industrial & Degradation of Phenol under UV-C Light in a Batch Reactor. Industrial & Degradation of Phenol under UV-C Light in a Batch Reactor. Industrial & Degradation of Phenol under UV-C Light in a Batch Reactor. Industrial & Degradation of Phenol under UV-C Light in a Batch Reactor. Industrial & Degradation of Phenol under UV-C Light in a Batch Reactor. Industrial & Degradation of Phenol under UV-C Light in a Batch Reactor. Industrial & Degradation of Phenol under UV-C Light in a Batch Reactor. Industrial & Degradat	1.8	45

#	Article	IF	CITATIONS
379	Study of hydrogen storage by carbonaceous material at room temperature. Diamond and Related Materials, 2007, 16, 1517-1523.	1.8	13
380	Process optimization of oxidative coupling of methane for ethylene production using response surface methodology. Journal of Chemical Technology and Biotechnology, 2007, 82, 81-91.	1.6	22
381	The effect of catalyst calcination temperature on the diameter of carbon nanotubes synthesized by the decomposition of methane. Carbon, 2007, 45, 1535-1541.	5.4	56
382	The effect of reduction temperature on Co-Mo/Al2O3 catalysts for carbon nanotubes formation. Applied Catalysis A: General, 2007, 326, 173-179.	2.2	55
383	Potential of hydrogen from oil palm biomass as a source of renewable energy worldwide. Energy Policy, 2007, 35, 5692-5701.	4.2	243
384	Synthesis of manganese oxide/carbon nanotube nanocomposites using wet chemical method. Journal of Materials Processing Technology, 2007, 190, 402-405.	3.1	24
385	Moderate temperature synthesis of single-walled carbon nanotubes on alumina supported nickel oxide catalyst. Materials Letters, 2007, 61, 3519-3521.	1.3	17
386	Key Factor in Rice Husk Ash/CaO Sorbent for High Flue Gas Desulfurization Activity. Environmental Science & Environmental Scie	4.6	42
387	Preparation and Characterization of CaO/CaSO4/Coal Fly Ash Sorbent for Sulfur Dioxide (SO2) Removal: Part I. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2006, 28, 1241-1249.	1.2	12
388	Optimization of Process Parameters for the Preparation of CaO/CaSO4/Coal Fly Ash Sorbent for Sulfur Dioxide (SO2) Removal: Part II. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2006, 28, 1251-1258.	1.2	5
389	Energy for sustainable development in Malaysia: Energy policy and alternative energy. Energy Policy, 2006, 34, 2388-2397.	4.2	177
390	Preparation of carbon nanotubes over cobalt-containing catalysts via catalytic decomposition of methane. Chemical Physics Letters, 2006, 426, 345-350.	1.2	64
391	Formation of Y-junction carbon nanotubes by catalytic CVD of methane. Solid State Communications, 2006, 140, 248-250.	0.9	14
392	COx-Free Hydrogen and Carbon Nanofibers Produced from Direct Decomposition of Methane on Nickel-Based Catalysts. Journal of Natural Gas Chemistry, 2006, 15, 253-258.	1.8	25
393	Production of High Purity Multi-Walled Carbon Nanotubes from Catalytic Decomposition of Methane. Journal of Natural Gas Chemistry, 2006, 15, 266-270.	1.8	14
394	A Survey on Various Carbon Sources for Biological Hydrogen Production via the Water-Gas Reaction Using a Photosynthetic Bacterium (Rhodospirillum rubrum). Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2006, 28, 1013-1026.	1.2	39
395	Study of adsorbent prepared from oil palm ash (OPA) for flue gas desulfurization. Separation and Purification Technology, 2005, 45, 50-60.	3.9	106
396	Ethanol and acetate production from synthesis gas via fermentation processes using anaerobic bacterium, Clostridium ljungdahlii. Biochemical Engineering Journal, 2005, 27, 110-119.	1.8	199

#	Article	IF	CITATIONS
397	Preparation and characterization of sorbents prepared from ash (waste material) for sulfur dioxide (SO2) removal. Journal of Material Cycles and Waste Management, 2005, 7, 16-23.	1.6	33
398	Liquefaction Studies of Low-Rank Malaysian Coal Using High-Pressure High-Temperature Batch-Wise Reactor. Coal Preparation, 2005, 25, 221-237.	0.5	6
399	Catalytic Conversion of Fatty Acids Mixture to Liquid Fuel and Chemicals over Composite Microporous/Mesoporous Catalysts. Energy & Energy & 2005, 19, 736-743.	2.5	81
400	Kinetics of esterification of palmitic acid with isopropanol usingp-toluene sulfonic acid and zinc ethanoate supported over silica gel as catalysts. Journal of Chemical Technology and Biotechnology, 2004, 79, 1127-1134.	1.6	62
401	Catalytic conversion of palm oil-based fatty acid mixture to liquid fuel. Biomass and Bioenergy, 2004, 27, 477-484.	2.9	100
402	Synthesis of composite material MCM-41/Beta and its catalytic performance in waste used palm oil cracking. Applied Catalysis A: General, 2004, 274, 15-23.	2.2	116
403	Effect of organic substrate on hydrogen production from synthesis gas using Rhodospirillum rubrum, in batch culture. Biochemical Engineering Journal, 2004, 21, 123-130.	1.8	64
404	Catalytic Cracking of Used Palm Oil and Palm Oil Fatty Acids Mixture for the Production of Liquid Fuel:  Kinetic Modeling. Energy & Ene	2.5	43
405	Mn/Ni/TiO2Catalyst for the Production of Hydrogen and Carbon Nanotubes from Methane Decomposition. Energy & Decomposition. Energy & Decomposition. Energy & Decomposition.	2.5	48
406	Hydrothermal stability and catalytic activity of mesoporous aluminum-containing SBA-15. Catalysis Communications, 2004, 5, 441-445.	1.6	67
407	Performance of photocatalytic reactors using immobilized TiO2 film for the degradation of phenol and methylene blue dye present in water stream. Chemosphere, 2004, 57, 547-554.	4.2	168
408	Kinetic Studies on Catalytic Decomposition of Methane to Hydrogen and Carbon over Ni/TiO2Catalyst. Industrial & Decomposition of Methane to Hydrogen and Carbon over Ni/TiO2Catalyst.	1.8	75
409	Liquid hydrocarbon fuels from palm oil by catalytic cracking over aluminosilicate mesoporous catalysts with various Si/Al ratios. Microporous and Mesoporous Materials, 2003, 64, 95-107.	2.2	144
410	Catalytic conversion of palm oil over mesoporous aluminosilicate MCM-41 for the production of liquid hydrocarbon fuels. Fuel Processing Technology, 2003, 84, 105-120.	3.7	96
411	Oxidative coupling of methane for the production of ethylene over Li-Ni/MgO catalys. Reaction Kinetics and Catalysis Letters, 2002, 75, 353-358.	0.6	3
412	Comparative study of Cu-ZSM-5 and Fe-ZSM-5 in the SCR of NOx with i-C4H10. Reaction Kinetics and Catalysis Letters, 2002, 75, 359-365.	0.6	7
413	Catalytic conversion of palm oil to fuels and chemicals. Canadian Journal of Chemical Engineering, 1999, 77, 156-162.	0.9	73
414	Synthesis of Fe ₃ O ₄ Nanoparticles to Synthesize Bundles of Single-Walled Carbon Nanotubes. Advanced Materials Research, 0, 1109, 108-112.	0.3	1

#	Article	lF	CITATIONS
415	Tunable Bandgap Engineering of Zn _{<i>x</i>} Cd _{1â° <i>x</i>} Se Solid Solution with Controlled Ratio via a Facile Oneâ€Pot Synthesis for Visibleâ€Light Photocatalytic H ₂ Production. Advanced Energy and Sustainability Research, 0, , 2100210.	2.8	8