Xiaohua Shen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4592963/publications.pdf

Version: 2024-02-01

414414 361413 3,479 33 20 32 citations h-index g-index papers 36 36 36 6272 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	LIN28 coordinately promotes nucleolar/ribosomal functions and represses the 2C-like transcriptional program in pluripotent stem cells. Protein and Cell, 2022, 13, 490-512.	11.0	28
2	Phase separation of RNA-binding protein promotes polymerase binding and transcription. Nature Chemical Biology, 2022, 18, 70-80.	8.0	57
3	A TET1-PSPC1-Neat1 molecular axis modulates PRC2 functions in controlling stem cell bivalency. Cell Reports, 2022, 39, 110928.	6.4	8
4	LncRNA <i>Platr22</i> promotes super-enhancer activity and stem cell pluripotency. Journal of Molecular Cell Biology, 2021, 13, 295-313.	3.3	13
5	Effects of salvianolate on microcirculatory disturbance in patients with stable coronary heart disease: study protocol for a randomized controlled trial. Trials, 2021, 22, 192.	1.6	1
6	Association of the classification and severityÂof heart failure with the incidenceÂof contrast-induced acute kidney injury. Scientific Reports, 2021, 11, 15348.	3.3	10
7	Homotypic clustering of L1 and B1/Alu repeats compartmentalizes the 3D genome. Cell Research, 2021, 31, 613-630.	12.0	105
8	Noncoding RNAs: biology and applicationsâ€"a Keystone Symposia report. Annals of the New York Academy of Sciences, 2021, 1506, 118-141.	3.8	13
9	DEAD-Box Helicase 18 Counteracts PRC2 to Safeguard Ribosomal DNA in Pluripotency Regulation. Cell Reports, 2020, 30, 81-97.e7.	6.4	25
10	Tn5-FISH, a novel cytogenetic method to image chromatin interactions with sub-kilobase resolution. Journal of Genetics and Genomics, 2020, 47, 727-734.	3.9	8
11	Transcriptome-Wide Profiling of Protein-RNA Interactions by Cross-Linking and Immunoprecipitation Mediated by FLAG-Biotin Tandem Purification. Journal of Visualized Experiments, 2020, , .	0.3	1
12	Genomic Repeats Categorize Genes with Distinct Functions for Orchestrated Regulation. Cell Reports, 2020, 30, 3296-3311.e5.	6.4	103
13	U1 snRNP regulates chromatin retention of noncoding RNAs. Nature, 2020, 580, 147-150.	27.8	150
14	RYBP/YAF2-PRC1 complexes and histone H1-dependent chromatin compaction mediate propagation of H2AK119ub1 during cell division. Nature Cell Biology, 2020, 22, 439-452.	10.3	72
15	Transcriptome-Wide Mapping of Protein–RNA Interactions. Methods in Molecular Biology, 2020, 2161, 161-173.	0.9	0
16	Identification of cis-Elements for RNA Subcellular Localization Through REL-seq. Methods in Molecular Biology, 2020, 2161, 143-160.	0.9	1
17	IDH1 fine-tunes cap-dependent translation initiation. Journal of Molecular Cell Biology, 2019, 11, 816-828.	3.3	3
18	The lncRNA <i>Hand2os1</i> /i>/ci>Uph locus orchestrates heart development through regulation of precise expression of <i>Hand2</i> . Development (Cambridge), 2019, 146, .	2.5	48

#	Article	IF	CITATIONS
19	Insight into novel RNA-binding activities via large-scale analysis of lncRNA-bound proteome and IDH1-bound transcriptome. Nucleic Acids Research, 2019, 47, 2244-2262.	14.5	29
20	RNA Targets Ribogenesis Factor WDR43 to Chromatin for Transcription and Pluripotency Control. Molecular Cell, 2019, 75, 102-116.e9.	9.7	43
21	RNA-dependent chromatin targeting of TET2 for endogenous retrovirus control in pluripotent stem cells. Nature Genetics, 2018, 50, 443-451.	21.4	122
22	Mouse knockout models reveal largely dispensable but context-dependent functions of lncRNAs during development. Journal of Molecular Cell Biology, 2018, 10, 175-178.	3.3	48
23	A LINE1-Nucleolin Partnership Regulates Early Development and ESC Identity. Cell, 2018, 174, 391-405.e19.	28.9	381
24	Cis- and trans-acting lncRNAs in pluripotency and reprogramming. Current Opinion in Genetics and Development, 2017, 46, 170-178.	3.3	139
25	Resveratrol prevents endothelial progenitor cells from senescence and reduces the oxidative reaction via PPAR- $\hat{1}^3$ /HO-1 pathways. Molecular Medicine Reports, 2016, 14, 5528-5534.	2.4	35
26	Divergent IncRNAs Regulate Gene Expression and Lineage Differentiation in Pluripotent Cells. Cell Stem Cell, 2016, 18, 637-652.	11.1	358
27	Tex10 Coordinates Epigenetic Control of Super-Enhancer Activity in Pluripotency and Reprogramming. Cell Stem Cell, 2015, 16, 653-668.	11.1	80
28	Opposing Roles for the IncRNA Haunt and Its Genomic Locus in Regulating HOXA Gene Activation during Embryonic Stem Cell Differentiation. Cell Stem Cell, 2015, 16, 504-516.	11.1	247
29	Stromal cellâ€derived factorâ€1α prevents endothelial progenitor cells senescence and enhances reâ€endothelialization of injured arteries via human telomerase reverse transcriptase. Cell Biology International, 2015, 39, 962-971.	3.0	6
30	PRC2 Is Required to Maintain Expression of the Maternal Gtl2-Rian-Mirg Locus by Preventing De Novo DNA Methylation in Mouse Embryonic Stem Cells. Cell Reports, 2015, 12, 1456-1470.	6.4	64
31	Jumonji Modulates Polycomb Activity and Self-Renewal versus Differentiation of Stem Cells. Cell, 2009, 139, 1303-1314.	28.9	398
32	Glimpses of the Epigenetic Landscape. Cell Stem Cell, 2009, 4, 1-2.	11.1	36
33	EZH1 Mediates Methylation on Histone H3 Lysine 27 and Complements EZH2 in Maintaining Stem Cell Identity and Executing Pluripotency. Molecular Cell, 2008, 32, 491-502.	9.7	838