List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4592447/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Dopamine neurons exhibit emergent glutamatergic identity in Parkinson's disease. Brain, 2022, 145, 879-886.	3.7	17
2	Genome-wide association study and functional validation implicates JADE1 in tauopathy. Acta Neuropathologica, 2022, 143, 33-53.	3.9	19
3	Ex vivo MRI and histopathology detect novel iron-rich cortical inflammation in frontotemporal lobar degeneration with tau versus TDP-43 pathology. NeuroImage: Clinical, 2022, 33, 102913.	1.4	17
4	Signature laminar distributions of pathology in frontotemporal lobar degeneration. Acta Neuropathologica, 2022, 143, 363-382.	3.9	12
5	John Q. Trojanowski. Nature Reviews Neurology, 2022, , .	4.9	1
6	Tau deposition patterns are associated with functional connectivity in primary tauopathies. Nature Communications, 2022, 13, 1362.	5.8	34
7	John Q. Trojanowski: neuropathology icon. Acta Neuropathologica, 2022, 143, 419-425.	3.9	1
8	Divergent Histopathological Networks of Frontotemporal Degeneration Proteinopathy Subytpes. Journal of Neuroscience, 2022, 42, 3868-3877.	1.7	4
9	TMEM106B deficiency impairs cerebellar myelination and synaptic integrity with Purkinje cell loss. Acta Neuropathologica Communications, 2022, 10, 33.	2.4	16
10	John Q. Trojanowski, MD, PhD (1946–2022). Neuron, 2022, 110, 1095-1096.	3.8	1
11	Multimarker synaptic protein cerebrospinal fluid panels reflect TDP-43 pathology and cognitive performance in a pathological cohort of frontotemporal lobar degeneration. Molecular Neurodegeneration, 2022, 17, 29.	4.4	7
12	Phases of volume loss in patients with known frontotemporal lobar degeneration spectrum pathology. Neurobiology of Aging, 2022, 113, 95-107.	1.5	5
13	Distinct characteristics of limbic-predominant age-related TDP-43 encephalopathy in Lewy body disease. Acta Neuropathologica, 2022, 143, 15-31.	3.9	29
14	Detection of astrocytic tau pathology facilitates recognition of chronic traumatic encephalopathy neuropathologic change. Acta Neuropathologica Communications, 2022, 10, 50.	2.4	13
15	A tribute to John Q. Trojanowski (1946–2022). Journal of Clinical Investigation, 2022, 132, .	3.9	1
16	ATN incorporating cerebrospinal fluid neurofilament light chain detects frontotemporal lobar degeneration. Alzheimer's and Dementia, 2021, 17, 822-830.	0.4	27
17	Neuropathology associated with SARS-CoV-2 infection. Lancet, The, 2021, 397, 277.	6.3	4
18	Early Selective Vulnerability of the CA2 Hippocampal Subfield in Primary Age-Related Tauopathy. Journal of Neuropathology and Experimental Neurology, 2021, 80, 102-111.	0.9	35

#	Article	IF	CITATIONS
19	PIKfyve activity is required for lysosomal trafficking of tau aggregates and tau seeding. Journal of Biological Chemistry, 2021, 296, 100636.	1.6	21
20	Frontotemporal Lobar Degeneration TDP-43-Immunoreactive Pathological Subtypes: Clinical and Mechanistic Significance. Advances in Experimental Medicine and Biology, 2021, 1281, 201-217.	0.8	26
21	Frontotemporal lobar degeneration proteinopathies have disparate microscopic patterns of white and grey matter pathology. Acta Neuropathologica Communications, 2021, 9, 30.	2.4	22
22	COllaborative Neuropathology NEtwork Characterizing ouTcomes of TBI (CONNECT-TBI). Acta Neuropathologica Communications, 2021, 9, 32.	2.4	13
23	BlueFeather, the singleton that wasn't: Shared gene content analysis supports expansion of Arthrobacter phage Cluster FE. PLoS ONE, 2021, 16, e0248418.	1.1	6
24	The Cryo-EM Effect: Structural Biology of Neurodegenerative Disease Proteostasis Factors. Journal of Neuropathology and Experimental Neurology, 2021, 80, 494-513.	0.9	4
25	Interactions between ALS-linked FUS and nucleoporins are associated with defects in the nucleocytoplasmic transport pathway. Nature Neuroscience, 2021, 24, 1077-1088.	7.1	54
26	Distinct brainâ€derived TDPâ€43 strains from FTLDâ€TDP subtypes induce diverse morphological TDPâ€43 aggregates and spreading patterns <i>in vitro</i> and <i>in vivo</i> . Neuropathology and Applied Neurobiology, 2021, 47, 1033-1049.	1.8	25
27	The Cryo-EM Effect: Structural Biology of Neurodegenerative Disease Aggregates. Journal of Neuropathology and Experimental Neurology, 2021, 80, 514-529.	0.9	11
28	Tau immunotherapy is associated with glial responses in FTLD-tau. Acta Neuropathologica, 2021, 142, 243-257.	3.9	22
29	TMEM106B modifies TDP-43 pathology in human ALS brain and cell-based models of TDP-43 proteinopathy. Acta Neuropathologica, 2021, 142, 629-642.	3.9	15
30	Three-dimensional mapping of neurofibrillary tangle burden in the human medial temporal lobe. Brain, 2021, 144, 2784-2797.	3.7	38
31	Predictors of cognitive impairment in primary age-related tauopathy: an autopsy study. Acta Neuropathologica Communications, 2021, 9, 134.	2.4	32
32	TDP-43 mediates SREBF2-regulated gene expression required for oligodendrocyte myelination. Journal of Cell Biology, 2021, 220, .	2.3	25
33	Trends in the Incidence of Hepatocellular Carcinoma in Washington DC: A Single Institutional Cohort Study (1959–2013). Journal of the National Medical Association, 2021, 113, 396-404.	0.6	0
34	Neuropathological consensus criteria for the evaluation of Lewy pathology in post-mortem brains: a multi-centre study. Acta Neuropathologica, 2021, 141, 159-172.	3.9	107
35	The development and convergence of co-pathologies in Alzheimer's disease. Brain, 2021, 144, 953-962.	3.7	76
36	Ex vivo MRI atlas of the human medial temporal lobe: characterizing neurodegeneration due to tau pathology. Acta Neuropathologica Communications, 2021, 9, 173.	2.4	14

#	Article	IF	CITATIONS
37	An integrated multi-omic analysis of iPSC-derived motor neurons from C9ORF72 ALS patients. IScience, 2021, 24, 103221.	1.9	27
38	SpaGCN: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature Methods, 2021, 18, 1342-1351.	9.0	291
39	Identifying unnecessary duplicate genetic testing in a large medical center. American Journal of Clinical Pathology, 2021, 156, S9-S10.	0.4	0
40	Machine learning suggests polygenic risk for cognitive dysfunction in amyotrophic lateral sclerosis. EMBO Molecular Medicine, 2021, 13, e12595.	3.3	13
41	Neurofilament Light Chain Related to Longitudinal Decline in Frontotemporal Lobar Degeneration. Neurology: Clinical Practice, 2021, 11, 105-116.	0.8	5
42	Retina tissue validation of optical coherence tomography determined outer nuclear layer loss in FTLD-tau. Acta Neuropathologica Communications, 2021, 9, 184.	2.4	2
43	Intraoperative cytology of pituicytomas. Diagnostic Cytopathology, 2020, 48, 342-349.	0.5	2
44	Autosomal dominant VCP hypomorph mutation impairs disaggregation of PHF-tau. Science, 2020, 370, .	6.0	85
45	Multimodal inÂvivo and postmortem assessments of tau in Lewy body disorders. Neurobiology of Aging, 2020, 96, 137-147.	1.5	14
46	ATN status in amnestic and non-amnestic Alzheimer's disease and frontotemporal lobar degeneration. Brain, 2020, 143, 2295-2311.	3.7	24
47	Defining and predicting transdiagnostic categories of neurodegenerative disease. Nature Biomedical Engineering, 2020, 4, 787-800.	11.6	22
48	ADNC-RS, a clinical-genetic risk score, predicts Alzheimer's pathology in autopsy-confirmed Parkinson's disease and Dementia with Lewy bodies. Acta Neuropathologica, 2020, 140, 449-461.	3.9	7
49	Building an Ex Vivo Atlas of the Earliest Brain Regions Affected by Alzheimer's Disease Pathology. , 2020, , .		3
50	Tau pathology associates with in vivo cortical thinning in Lewy body disorders. Annals of Clinical and Translational Neurology, 2020, 7, 2342-2355.	1.7	20
51	APOE and TREM2 regulate amyloid-responsive microglia in Alzheimer's disease. Acta Neuropathologica, 2020, 140, 477-493.	3.9	117
52	Degeneration of the locus coeruleus is a common feature of tauopathies and distinct from TDP-43 proteinopathies in the frontotemporal lobar degeneration spectrum. Acta Neuropathologica, 2020, 140, 675-693.	3.9	15
53	Distinct clinicopathologic clusters of persons with TDP-43 proteinopathy. Acta Neuropathologica, 2020, 140, 659-674.	3.9	29
54	Limbic-predominant age-related TDP-43 encephalopathy differs from frontotemporal lobar degeneration. Brain, 2020, 143, 2844-2857.	3.7	44

#	Article	IF	CITATIONS
55	Distribution patterns of tau pathology in progressive supranuclear palsy. Acta Neuropathologica, 2020, 140, 99-119.	3.9	210
56	Tau immunophenotypes in chronic traumatic encephalopathy recapitulate those of ageing and Alzheimer's disease. Brain, 2020, 143, 1572-1587.	3.7	50
57	Large-scale proteomic analysis of Alzheimer's disease brain and cerebrospinal fluid reveals early changes in energy metabolism associated with microglia and astrocyte activation. Nature Medicine, 2020, 26, 769-780.	15.2	547
58	Contribution of mixed pathology to medial temporal lobe atrophy in Alzheimer's disease. Alzheimer's and Dementia, 2020, 16, 843-852.	0.4	43
59	Astroglial tau pathology alone preferentially concentrates at sulcal depths in chronic traumatic encephalopathy neuropathologic change. Brain Communications, 2020, 2, fcaa210.	1.5	19
60	Primary Tau Pathology, Not Copathology, Correlates With Clinical Symptoms in PSP and CBD. Journal of Neuropathology and Experimental Neurology, 2020, 79, 296-304.	0.9	35
61	Neuronal Transcriptome from Repeat Expanded Human Tissue is Associated with Loss of C9orf72 Function. Free Neuropathology, 2020, 1, .	2.4	1
62	Cognitive and Pathological Influences of Tau Pathology in Lewy Body Disorders. Annals of Neurology, 2019, 85, 259-271.	2.8	88
63	C9orf72 intermediate repeats are associated with corticobasal degeneration, increased C9orf72 expression and disruption of autophagy. Acta Neuropathologica, 2019, 138, 795-811.	3.9	50
64	Empiric Methods to Account for Pre-analytical Variability in Digital Histopathology in Frontotemporal Lobar Degeneration. Frontiers in Neuroscience, 2019, 13, 682.	1.4	13
65	Diffusion Tensor MRI to Distinguish Progressive Supranuclear Palsy from α-Synucleinopathies. Radiology, 2019, 293, 646-653.	3.6	20
66	Targeted DNA methylation of neurodegenerative disease genes via homology directed repair. Nucleic Acids Research, 2019, 47, 11609-11622.	6.5	13
67	Genetic predictors of survival in behavioral variant frontotemporal degeneration. Neurology, 2019, 93, e1707-e1714.	1.5	11
68	Chronic traumatic encephalopathy is a common co-morbidity, but less frequent primary dementia in former soccer and rugby players. Acta Neuropathologica, 2019, 138, 389-399.	3.9	108
69	Histologic, immunohistochemical, and molecular features of pituicytomas and atypical pituicytomas. Acta Neuropathologica Communications, 2019, 7, 69.	2.4	26
70	Longitudinal progression of grey matter atrophy in non-amnestic Alzheimer's disease. Brain, 2019, 142, 1701-1722.	3.7	37
71	Loss of Nuclear TDP-43 Is Associated with Decondensation of LINE Retrotransposons. Cell Reports, 2019, 27, 1409-1421.e6.	2.9	137
72	Divergent patterns of TDPâ€43 and tau pathologies in primary progressive aphasia. Annals of Neurology, 2019, 85, 630-643.	2.8	40

#	Article	IF	CITATIONS
73	Genome-wide analyses as part of the international FTLD-TDP whole-genome sequencing consortium reveals novel disease risk factors and increases support for immune dysfunction in FTLD. Acta Neuropathologica, 2019, 137, 879-899.	3.9	90
74	Primum non nocere: a call for balance when reporting on CTE. Lancet Neurology, The, 2019, 18, 231-233.	4.9	48
75	Early Urinary Catheter Removal in Patients Undergoing Colorectal Surgery with an Enhanced Recovery after Surgery Pathway. American Surgeon, 2019, 85, 139-141.	0.4	3
76	Elevated YKL-40 and low sAPPÎ ² :YKL-40 ratio in antemortem cerebrospinal fluid of patients with pathologically confirmed FTLD. Journal of Neurology, Neurosurgery and Psychiatry, 2019, 90, 180-186.	0.9	17
77	UNC13A polymorphism contributes to frontotemporal disease in sporadic amyotrophic lateral sclerosis. Neurobiology of Aging, 2019, 73, 190-199.	1.5	31
78	CSF tau and β-amyloid predict cerebral synucleinopathy in autopsied Lewy body disorders. Neurology, 2018, 90, e1038-e1046.	1.5	68
79	Integrated neurodegenerative disease autopsy diagnosis. Acta Neuropathologica, 2018, 135, 643-646.	3.9	12
80	Asymmetry of post-mortem neuropathology in behavioural-variant frontotemporal dementia. Brain, 2018, 141, 288-301.	3.7	56
81	Potential genetic modifiers of disease risk and age at onset in patients with frontotemporal lobar degeneration and GRN mutations: a genome-wide association study. Lancet Neurology, The, 2018, 17, 548-558.	4.9	97
82	Cerebrospinal fluid αâ€synuclein contributes to the differential diagnosis of Alzheimer's disease. Alzheimer's and Dementia, 2018, 14, 1052-1062.	0.4	34
83	A 2-Step Cerebrospinal Algorithm for the Selection of Frontotemporal Lobar Degeneration Subtypes. JAMA Neurology, 2018, 75, 738.	4.5	54
84	Tauopathy with hippocampal 4â€repeat tau immunoreactive spherical inclusions: a report of three cases. Brain Pathology, 2018, 28, 274-283.	2.1	12
85	Neocortical origin and progression of gray matter atrophy in nonamnestic Alzheimer's disease. Neurobiology of Aging, 2018, 63, 75-87.	1.5	61
86	Patient-derived frontotemporal lobar degeneration brain extracts induce formation and spreading of TDP-43 pathology in vivo. Nature Communications, 2018, 9, 4220.	5.8	176
87	Converging Patterns of α-Synuclein Pathology in Multiple System Atrophy. Journal of Neuropathology and Experimental Neurology, 2018, 77, 1005-1016.	0.9	26
88	Sequential stages and distribution patterns of aging-related tau astrogliopathy (ARTAG) in the human brain. Acta Neuropathologica Communications, 2018, 6, 50.	2.4	77
89	Unexpected similarities between C9ORF72 and sporadic forms of ALS/FTD suggest a common disease mechanism. ELife, 2018, 7, .	2.8	53
90	Alzheimer's genetic risk is reduced in primary ageâ€related tauopathy: a potential model of resistance?. Annals of Clinical and Translational Neurology, 2018, 5, 927-934.	1.7	14

#	Article	IF	CITATIONS
91	Neurodegenerative disease concomitant proteinopathies are prevalent, age-related and APOE4-associated. Brain, 2018, 141, 2181-2193.	3.7	448
92	Expansion of the classification of FTLD-TDP: distinct pathology associated with rapidly progressive frontotemporal degeneration. Acta Neuropathologica, 2017, 134, 65-78.	3.9	163
93	RNA metabolism in neurodegenerative disease. DMM Disease Models and Mechanisms, 2017, 10, 509-518.	1.2	102
94	Clinical marker for Alzheimer disease pathology in logopenic primary progressive aphasia. Neurology, 2017, 88, 2276-2284.	1.5	114
95	Editorial overview: Molecular & genetic basis of disease. Current Opinion in Genetics and Development, 2017, 44, iv-vi.	1.5	0
96	Multisite Assessment of Aging-Related Tau Astrogliopathy (ARTAG). Journal of Neuropathology and Experimental Neurology, 2017, 76, 605-619.	0.9	38
97	Evaluating the Patterns of Aging-Related Tau Astrogliopathy Unravels Novel Insights Into Brain Aging and Neurodegenerative Diseases. Journal of Neuropathology and Experimental Neurology, 2017, 76, 270-288.	0.9	98
98	Cognitive decline associated with pathological burden in primary ageâ€related tauopathy. Alzheimer's and Dementia, 2017, 13, 1048-1053.	0.4	47
99	Neuropathological and genetic correlates of survival and dementia onset in synucleinopathies: a retrospective analysis. Lancet Neurology, The, 2017, 16, 55-65.	4.9	394
100	Ante mortem cerebrospinal fluid tau levels correlate with postmortem tau pathology in frontotemporal lobar degeneration. Annals of Neurology, 2017, 82, 247-258.	2.8	51
101	TDP-43 Depletion in Microglia Promotes Amyloid Clearance but Also Induces Synapse Loss. Neuron, 2017, 95, 297-308.e6.	3.8	171
102	Neuron loss and degeneration in the progression of TDP-43 in frontotemporal lobar degeneration. Acta Neuropathologica Communications, 2017, 5, 68.	2.4	34
103	Assessing robustness of hazard ratio estimates to outcome misclassification in longitudinal panel studies with application to Alzheimer's disease. PLoS ONE, 2017, 12, e0190107.	1.1	2
104	Deep clinical and neuropathological phenotyping of <scp>P</scp> ick disease. Annals of Neurology, 2016, 79, 272-287.	2.8	146
105	Multisite assessment of NIAâ€AA guidelines for the neuropathologic evaluation of Alzheimer's disease. Alzheimer's and Dementia, 2016, 12, 164-169.	0.4	82
106	Cognitive reserve in frontotemporal degeneration. Neurology, 2016, 87, 1813-1819.	1.5	40
107	Multimodal imaging evidence of pathology-mediated disease distribution in corticobasal syndrome. Neurology, 2016, 87, 1227-1234.	1.5	25
108	Multimodal evaluation demonstrates in vivo 18F-AV-1451 uptake in autopsy-confirmed corticobasal degeneration. Acta Neuropathologica, 2016, 132, 935-937.	3.9	81

#	Article	IF	CITATIONS
109	Semi-Automated Digital Image Analysis of Pick's Disease and TDP-43 Proteinopathy. Journal of Histochemistry and Cytochemistry, 2016, 64, 54-66.	1.3	43
110	Aging-related tau astrogliopathy (ARTAG): harmonized evaluation strategy. Acta Neuropathologica, 2016, 131, 87-102.	3.9	380
111	Pathological α-synuclein distribution in subjects with coincident Alzheimer's and Lewy body pathology. Acta Neuropathologica, 2016, 131, 393-409.	3.9	123
112	Common neuropathological features underlie distinct clinical presentations in three siblings with hereditary diffuse leukoencephalopathy with spheroids caused by CSF1R p.Arg782His. Acta Neuropathologica Communications, 2015, 3, 42.	2.4	14
113	<i>C9orf72</i> promoter hypermethylation is neuroprotective. Neurology, 2015, 84, 1622-1630.	1.5	66
114	Semi-automated quantification of C9orf72 expansion size reveals inverse correlation between hexanucleotide repeat number and disease duration in frontotemporal degeneration. Acta Neuropathologica, 2015, 130, 363-372.	3.9	65
115	Frontotemporal lobar degeneration: defining phenotypic diversity through personalized medicine. Acta Neuropathologica, 2015, 129, 469-491.	3.9	218
116	C9orf72 BAC Transgenic Mice Display Typical Pathologic Features of ALS/FTD. Neuron, 2015, 88, 892-901.	3.8	249
117	Hypermethylation of repeat expanded C9orf72 is a clinical and molecular disease modifier. Acta Neuropathologica, 2015, 129, 39-52.	3.9	111
118	Transcriptomic Changes Due to Cytoplasmic TDP-43 Expression Reveal Dysregulation of Histone Transcripts and Nuclear Chromatin. PLoS ONE, 2015, 10, e0141836.	1.1	40
119	Perforant path synaptic loss correlates with cognitive impairment and Alzheimer's disease in the oldest-old. Brain, 2014, 137, 2578-2587.	3.7	132
120	Poly-A Binding Protein-1 Localization to a Subset of TDP-43 Inclusions in Amyotrophic Lateral Sclerosis Occurs More Frequently in Patients Harboring an Expansion in <i>C9orf72</i> . Journal of Neuropathology and Experimental Neurology, 2014, 73, 837-845.	0.9	46
121	C9orf72 hypermethylation protects against repeat expansion-associated pathology in ALS/FTD. Acta Neuropathologica, 2014, 128, 525-541.	3.9	154
122	The neuropathology of obesity: insights from human disease. Acta Neuropathologica, 2014, 127, 3-28.	3.9	64
123	Abnormal serine phosphorylation of insulin receptor substrate 1 is associated with tau pathology in Alzheimer's disease and tauopathies. Acta Neuropathologica, 2014, 128, 679-689.	3.9	158
124	TDP-43 pathology and neuronal loss in amyotrophic lateral sclerosis spinal cord. Acta Neuropathologica, 2014, 128, 423-437.	3.9	203
125	A platform for discovery: The University of Pennsylvania Integrated Neurodegenerative Disease Biobank. Alzheimer's and Dementia, 2014, 10, 477.	0.4	167
126	A comparison of AÎ ² amyloid pathology staging systems and correlation with clinical diagnosis. Acta Neuropathologica, 2014, 128, 543-550.	3.9	26

#	Article	IF	CITATIONS
127	Topography of FUS pathology distinguishes late-onset BIBD from aFTLD-U. Acta Neuropathologica Communications, 2013, 1, 1-11.	2.4	13
128	Development and Validation of Pedigree Classification Criteria for Frontotemporal Lobar Degeneration. JAMA Neurology, 2013, 70, 1411.	4.5	107
129	Comparative survey of the topographical distribution of signature molecular lesions in major neurodegenerative diseases. Journal of Comparative Neurology, 2013, 521, 4339-4355.	0.9	47
130	Stages of pTDPâ€43 pathology in amyotrophic lateral sclerosis. Annals of Neurology, 2013, 74, 20-38.	2.8	820
131	Determination of Grade and Subtype of Meningiomas by Using Histogram Analysis of Diffusion-Tensor Imaging Metrics. Radiology, 2012, 262, 584-592.	3.6	67
132	Cerebrovascular atherosclerosis correlates with Alzheimer pathology in neurodegenerative dementias. Brain, 2012, 135, 3749-3756.	3.7	228
133	Gains or losses: molecular mechanisms of TDP43-mediated neurodegeneration. Nature Reviews Neuroscience, 2012, 13, 38-50.	4.9	568
134	Pattern of ubiquilin pathology in ALS and FTLD indicates presence of C9ORF72 hexanucleotide expansion. Acta Neuropathologica, 2012, 123, 825-839.	3.9	164
135	Alteration of hypothalamic cellular dynamics in obesity. Journal of Clinical Investigation, 2012, 122, 22-25.	3.9	17
136	Central Regulation of Appetite and Satiety Behavior. , 2011, , 1023-1034.		2
137	Â-Syn Suppression Reverses Synaptic and Memory Defects in a Mouse Model of Dementia with Lewy Bodies. Journal of Neuroscience, 2011, 31, 10076-10087.	1.7	105
138	Dysregulation of the ALS-associated gene TDP-43 leads to neuronal death and degeneration in mice. Journal of Clinical Investigation, 2011, 121, 726-738.	3.9	343
139	Obesity, leptin, and Alzheimer's disease. Annals of the New York Academy of Sciences, 2011, 1243, 15-29.	1.8	104
140	Metabolic Dysfunction Associated with Adiponectin Deficiency Enhances Kainic Acid-Induced Seizure Severity. Journal of Neuroscience, 2011, 31, 14361-14366.	1.7	43
141	Intraneuronal APP, Not Free AÎ ² Peptides in 3xTg-AD Mice: Implications for Tau versus AÎ ² -Mediated Alzheimer Neurodegeneration. Journal of Neuroscience, 2011, 31, 7691-7699.	1.7	95
142	Olfactory epithelium amyloidâ€Î² and paired helical filamentâ€ŧau pathology in Alzheimer disease. Annals of Neurology, 2010, 67, 462-469.	2.8	167
143	Lack of shunt response in suspected idiopathic normal pressure hydrocephalus with Alzheimer disease pathology. Annals of Neurology, 2010, 68, 535-540.	2.8	148
144	MRI and Positron Emission Tomography Findings in Heidenhain Variant Creutzfeldt-Jakob Disease. Journal of Neuro-Ophthalmology, 2010, 30, 260-262.	0.4	15

#	Article	IF	CITATIONS
145	Phosphorylation of S409/410 of TDP-43 is a consistent feature in all sporadic and familial forms of TDP-43 proteinopathies. Acta Neuropathologica, 2009, 117, 137-149.	3.9	466
146	Primary diffuse leptomeningeal gliomatosis mimicking a chronic inflammatory meningitis. Journal of the Neurological Sciences, 2009, 278, 127-131.	0.3	21
147	Thyroid Transcription Factor 1 Expression in Sellar Tumors: A Histogenetic Marker?. Journal of Neuropathology and Experimental Neurology, 2009, 68, 482-488.	0.9	118
148	TDP-43 immunoreactivity in anoxic, ischemic and neoplastic lesions of the central nervous system. Acta Neuropathologica, 2008, 115, 305-311.	3.9	58
149	TDPâ€43 immunoreactivity in anoxic, ischemic and proliferating lesion of the central nervous system. FASEB Journal, 2008, 22, 708.13.	0.2	0
150	Supranuclear vertical gaze abnormalities in sporadic Creutzfeldt–Jakob disease. Journal of the Neurological Sciences, 2007, 253, 69-72.	0.3	30
151	Targeting Amyloid-β Peptide (Aβ) Oligomers by Passive Immunization with a Conformation-selective Monoclonal Antibody Improves Learning and Memory in Aβ Precursor Protein (APP) Transgenic Mice. Journal of Biological Chemistry, 2006, 281, 4292-4299.	1.6	246
152	Axonal Transport, Amyloid Precursor Protein, Kinesin-1, and the Processing Apparatus: Revisited. Journal of Neuroscience, 2005, 25, 2386-2395.	1.7	221
153	BACE overexpression alters the subcellular processing of APP and inhibits $A\hat{l}^2$ deposition in vivo. Journal of Cell Biology, 2005, 168, 291-302.	2.3	132
154	Microtubule-binding drugs offset tau sequestration by stabilizing microtubules and reversing fast axonal transport deficits in a tauopathy model. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 227-231.	3.3	374
155	Meningoencephalitis associated with passive immunization of a transgenic murine model of Alzheimer's amyloidosis. FEBS Letters, 2005, 579, 2564-2568.	1.3	47
156	Modulation of Nuclear Factor-κB Activity by Indomethacin Influences Aβ Levels but Not Aβ Precursor Protein Metabolism in a Model of Alzheimer's Disease. American Journal of Pathology, 2004, 165, 2197-2206.	1.9	156
157	Secretion and Intracellular Generation of Truncated Aβ in β-Site Amyloid-β Precursor Protein-cleaving Enzyme Expressing Human Neurons. Journal of Biological Chemistry, 2003, 278, 4458-4466.	1.6	75
158	Genetically Modified NT2N Human Neuronal Cells Mediate Long-Term Gene Expression as CNS Grafts In Vivo and Improve Functional Cognitive Outcome Following Experimental Traumatic Brain Injury. Journal of Neuropathology and Experimental Neurology, 2003, 62, 368-380.	0.9	84
159	Distribution of a Lysosomal Enzyme in the Adult Brain by Axonal Transport and by Cells of the Rostral Migratory Stream. Journal of Neuroscience, 2002, 22, 6437-6446.	1.7	122