
Marco Barla

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4592419/publications.pdf Version: 2024-02-01

ΜΑΡΟΟ ΒΑΡΙΑ

#	Article	IF	CITATIONS
1	Complex Soil–Pipe Interaction: Challenges in Geological Characterization and Construction. Cities Research Series, 2022, , 43-101.	0.5	2
2	Investigation Techniques: Pipe Jacking in Complex Geology. Cities Research Series, 2022, , 7-41.	0.5	1
3	Thermal performance assessment of an energy lining for the Lyon-Turin base tunnel. Soils and Rocks, 2022, 45, 1-12.	0.5	2
4	Site characterization for the design of thermoactive geostructures. Soils and Rocks, 2022, 45, 1-15.	0.5	3
5	An Increasingly Open Journal. International Journal of Geomechanics, 2022, 22, .	2.7	0
6	The role of ground conditions on the heat exchange potential of energy walls. Geomechanics for Energy and the Environment, 2021, 25, 100199.	2.5	20
7	Thermal Activation of Tunnel Infrastructures: City-Scale Solutions for Basel, Switzerland. Lecture Notes in Civil Engineering, 2021, , 993-1001.	0.4	0
8	Development and testing of a novel geothermal wall system. International Journal of Energy and Environmental Engineering, 2021, 12, 689-704.	2.5	4
9	Numerical Simulation of Swelling in Tunnels. Lecture Notes in Civil Engineering, 2021, , 353-360.	0.4	0
10	3D Voronoi Tessellation for the Study of Mechanical Behavior of Rocks at Different Scales. Lecture Notes in Civil Engineering, 2021, , 1010-1017.	0.4	0
11	Climate Change Adaptation of Geo-Structures in Europe: Emerging Issues and Future Steps. Geosciences (Switzerland), 2021, 11, 488.	2.2	5
12	City-scale analysis of subsoil thermal conditions due to geothermal exploitation. Environmental Geotechnics, 2020, 7, 306-316.	2.3	12
13	Geothermal potential of the NE extension Warsaw (Poland) metro tunnels. Environmental Geotechnics, 2020, 7, 282-294.	2.3	17
14	Energy and mechanical aspects on the thermal activation of diaphragm walls for heating and cooling. Renewable Energy, 2020, 147, 2654-2663.	8.9	25
15	Geothermal potential of tunnel infrastructures – development of tools at the city-scale of Basel, Switzerland. Geothermics, 2020, 83, 101734.	3.4	22
16	Editorial: Shallow geothermal energy for buildings and infrastructure. Environmental Geotechnics, 2020, 7, 223-224.	2.3	1
17	Passing the Baton. International Journal of Geomechanics, 2020, 20, 01820001.	2.7	1
18	Energy tunnel linings thermo-mechanical performance: comparison between field observations and numerical modelling. E3S Web of Conferences, 2020, 205, 06008.	0.5	8

MARCO BARLA

#	Article	IF	CITATIONS
19	Linee guida per la gestione sostenibile delle venute d'acqua e del calore geotermico nelle gallerie. Acque Sotterranee - Italian Journal of Groundwater, 2020, 9, .	0.3	0
20	A method to estimate the jacking force for pipe jacking in sandy soils. Tunnelling and Underground Space Technology, 2019, 90, 119-130.	6.2	49
21	Analysis of jacking forces during pipe jacking in granular materials using particle methods. Underground Space (China), 2019, 4, 277-288.	7.5	18
22	A novel real-scale experimental prototype of energy tunnel. Tunnelling and Underground Space Technology, 2019, 87, 1-14.	6.2	49
23	Earth pressure on shield excavation face for pipe jacking considering arching effect. Tunnelling and Underground Space Technology, 2018, 72, 17-27.	6.2	44
24	Energy tunnels: concept and design aspects. Underground Space (China), 2018, 3, 268-276.	7.5	51
25	Energy performance of diaphragm walls used as heat exchangers. Proceedings of the Institution of Civil Engineers: Geotechnical Engineering, 2017, 170, 232-245.	1.6	41
26	Remote monitoring of the Comba Citrin landslide using discontinuous GBInSAR campaigns. Engineering Geology, 2017, 222, 111-123.	6.3	13
27	A multi-stage triaxial testing procedure for low permeable geomaterials applied to Opalinus Clay. Journal of Rock Mechanics and Geotechnical Engineering, 2017, 9, 519-530.	8.1	20
28	Pipe Jacking in Sandy Soil Under a River in Shenyang, China. Indian Geotechnical Journal, 2017, 47, 246-260.	1.4	9
29	A method for locating rockfall impacts using signals recorded by a microseismic network. Geoenvironmental Disasters, 2017, 4, .	3.6	14
30	A Robust Wireless Sensor Network for Landslide Risk Analysis: System Design, Deployment, and Field Testing. IEEE Sensors Journal, 2016, 16, 6374-6386.	4.7	65
31	The role of ground conditions on energy tunnels' heat exchange. Environmental Geotechnics, 2016, 3, 214-224.	2.3	58
32	Multi Scale Numerical Modelling Related to Hydrofracking for Deep Geothermal Energy Exploitation. Procedia Engineering, 2016, 158, 314-319.	1.2	5
33	Geotechnical risk management approach for TBM tunnelling in squeezing ground conditions. Tunnelling and Underground Space Technology, 2016, 57, 201-210.	6.2	17
34	Application of energy tunnels to an urban environment. Geothermics, 2016, 61, 104-113.	3.4	101
35	Combined Finite–Discrete Numerical Modeling of Runout of the Torgiovannetto di Assisi Rockslide in Central Italy. International Journal of Geomechanics, 2016, 16, .	2.7	29
36	Energy from geo-structures: a topic of growing interest. Environmental Geotechnics, 2015, 2, 3-7.	2.3	42

MARCO BARLA

#	Article	IF	CITATIONS
37	Methodological approach for a sustainable management of water inflow and geothermal energy in tunnels. Acque Sotterranee - Italian Journal of Groundwater, 2015, 4, .	0.3	0
38	Early Warning Monitoring of Natural and Engineered Slopes with Ground-Based Synthetic-Aperture Radar. Rock Mechanics and Rock Engineering, 2015, 48, 235-246.	5.4	94
39	Combining Finite-Discrete Numerical Modelling and Radar Interferometry for Rock Landslide Early Warning Systems. , 2015, , 705-708.		2
40	A method to design microtunnelling installations in randomly cemented Torino alluvial soil. Tunnelling and Underground Space Technology, 2013, 33, 73-81.	6.2	28
41	Slope stabilization in difficult conditions: the case study of a debris slide in NW Italian Alps. Landslides, 2013, 10, 343-355.	5.4	12
42	Rock Slide Simulation with the Combined Finite-Discrete Element Method. International Journal of Geomechanics, 2012, 12, 711-721.	2.7	70
43	Special Issue on Advances in Modeling Rock Engineering Problems. International Journal of Geomechanics, 2012, 12, 617-617.	2.7	15
44	Torino subsoil characterization by combining site investigations and numerical modelling / Charakterisierung des Turiner Untergrunds mithilfe von Feldstudien und numerischer Modellierungen. Geomechanik Und Tunnelbau, 2012, 5, 214-232.	0.3	21
45	Torino Metro Line 1 south extension - modelling and settlement monitoring / Süderweiterung der Turiner Metro Linie 1 - Modellierung und Monitoring der Setzungen. Geomechanik Und Tunnelbau, 2012, 5, 233-242.	0.3	1
46	Geotechnical monitoring of a subway tunnel in service below rail link under construction in Torino / Geotechnisches Monitoring des Tunnelvortriebs in NÃ H e eines in Betrieb befindlichen Uâ€Bahntunnels in Turin. Geomechanik Und Tunnelbau, 2011, 4, 393-404.	0.3	0
47	Development of a New Direct Shear Testing Apparatus. Rock Mechanics and Rock Engineering, 2010, 43, 117-122.	5.4	44
48	New Triaxial Apparatus for Rocks. Rock Mechanics and Rock Engineering, 2010, 43, 225-230.	5.4	32
49	Monitoring of the Beauregard landslide (Aosta Valley, Italy) using advanced and conventional techniques. Engineering Geology, 2010, 116, 218-235.	6.3	217
50	Microparameters Calibration for Loose and Cemented Soil When Using Particle Methods. International Journal of Geomechanics, 2009, 9, 217-229.	2.7	39
51	The Mechanical Behaviour of Clay Shales and Implications on the Design of Tunnels. Rock Mechanics and Rock Engineering, 2009, 42, 361-388.	5.4	87
52	Numerical simulation of the swelling behaviour around tunnels based on special triaxial tests. Tunnelling and Underground Space Technology, 2008, 23, 508-521.	6.2	42
53	Analysis of jacking forces during microtunnelling in limestone. Tunnelling and Underground Space Technology, 2006, 21, 668-683.	6.2	66
54	Characterisation of Italian clay shales for tunnel design. International Journal of Rock Mechanics and Minings Sciences, 2004, 41, 221-227.	5.8	2

#	Article	IF	CITATIONS
55	Characterisation of Italian clay shales for tunnel design. International Journal of Rock Mechanics and Minings Sciences, 2004, 41, 397.	5.8	6