Taeghwan Hyeon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/459238/publications.pdf Version: 2024-02-01

		613	794
292	63,400	124	247
papers	citations	h-index	g-index
316	316	316	59580
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Ultra-large-scale syntheses of monodisperse nanocrystals. Nature Materials, 2004, 3, 891-895.	13.3	3,713
2	Synthesis of Highly Crystalline and Monodisperse Maghemite Nanocrystallites without a Size-Selection Process. Journal of the American Chemical Society, 2001, 123, 12798-12801.	6.6	1,937
3	Synthesis of Monodisperse Spherical Nanocrystals. Angewandte Chemie - International Edition, 2007, 46, 4630-4660.	7.2	1,751
4	Chemical synthesis of magnetic nanoparticles. Chemical Communications, 2003, , 927-934.	2.2	1,415
5	A graphene-based electrochemical device with thermoresponsive microneedles for diabetes monitoring and therapy. Nature Nanotechnology, 2016, 11, 566-572.	15.6	1,394
6	The surface science of nanocrystals. Nature Materials, 2016, 15, 141-153.	13.3	1,293
7	Multifunctional wearable devices for diagnosis and therapy of movement disorders. Nature Nanotechnology, 2014, 9, 397-404.	15.6	1,246
8	Stretchable silicon nanoribbon electronics for skin prosthesis. Nature Communications, 2014, 5, 5747.	5.8	1,145
9	Multifunctional Uniform Nanoparticles Composed of a Magnetite Nanocrystal Core and a Mesoporous Silica Shell for Magnetic Resonance and Fluorescence Imaging and for Drug Delivery. Angewandte Chemie - International Edition, 2008, 47, 8438-8441.	7.2	1,135
10	Prospects of Nanoscience with Nanocrystals. ACS Nano, 2015, 9, 1012-1057.	7.3	1,005
11	Multifunctional nanostructured materials for multimodal imaging, and simultaneous imaging and therapy. Chemical Society Reviews, 2009, 38, 372-390.	18.7	981
12	Recent Advances in Flexible and Stretchable Bioâ€Electronic Devices Integrated with Nanomaterials. Advanced Materials, 2016, 28, 4203-4218.	11.1	894
13	Designed synthesis of uniformly sized iron oxide nanoparticles for efficient magnetic resonance imaging contrast agents. Chemical Society Reviews, 2012, 41, 2575-2589.	18.7	865
14	Wearable/disposable sweat-based glucose monitoring device with multistage transdermal drug delivery module. Science Advances, 2017, 3, e1601314.	4.7	836
15	Large-Scale Synthesis of Uniform and Extremely Small-Sized Iron Oxide Nanoparticles for High-Resolution <i>T</i> ₁ Magnetic Resonance Imaging Contrast Agents. Journal of the American Chemical Society, 2011, 133, 12624-12631.	6.6	835
16	Iron Oxide Based Nanoparticles for Multimodal Imaging and Magnetoresponsive Therapy. Chemical Reviews, 2015, 115, 10637-10689.	23.0	827
17	Atomic-level tuning of Co–N–C catalyst for high-performance electrochemical H2O2 production. Nature Materials, 2020, 19, 436-442.	13.3	725
18	Synthesis of a new mesoporous carbon and its application to electrochemical double-layer capacitors. Chemical Communications, 1999, , 2177-2178.	2.2	716

#	Article	IF	CITATIONS
19	Highly conductive, stretchable and biocompatible Ag–Au core–sheath nanowire composite for wearable and implantable bioelectronics. Nature Nanotechnology, 2018, 13, 1048-1056.	15.6	695
20	Uniform Mesoporous Dye-Doped Silica Nanoparticles Decorated with Multiple Magnetite Nanocrystals for Simultaneous Enhanced Magnetic Resonance Imaging, Fluorescence Imaging, and Drug Delivery. Journal of the American Chemical Society, 2010, 132, 552-557.	6.6	687
21	Multifunctional Mesoporous Silica Nanocomposite Nanoparticles for Theranostic Applications. Accounts of Chemical Research, 2011, 44, 893-902.	7.6	676
22	Continuous O ₂ -Evolving MnFe ₂ O ₄ Nanoparticle-Anchored Mesoporous Silica Nanoparticles for Efficient Photodynamic Therapy in Hypoxic Cancer. Journal of the American Chemical Society, 2017, 139, 10992-10995.	6.6	616
23	One-Nanometer-Scale Size-Controlled Synthesis of Monodisperse Magnetic Iron Oxide Nanoparticles. Angewandte Chemie - International Edition, 2005, 44, 2872-2877.	7.2	571
24	Reverseâ€Micelleâ€Induced Porous Pressureâ€Sensitive Rubber for Wearable Human–Machine Interfaces. Advanced Materials, 2014, 26, 4825-4830.	11.1	564
25	Nonblinking and Nonbleaching Upconverting Nanoparticles as an Optical Imaging Nanoprobe and T1 Magnetic Resonance Imaging Contrast Agent. Advanced Materials, 2009, 21, 4467-4471.	11.1	548
26	Development of aT1â€Contrast Agent for Magnetic Resonance Imaging Using MnO Nanoparticles. Angewandte Chemie - International Edition, 2007, 46, 5397-5401.	7.2	545
27	Wearable red–green–blue quantum dot light-emitting diode array using high-resolution intaglio transfer printing. Nature Communications, 2015, 6, 7149.	5.8	536
28	Nano‣ized CT Contrast Agents. Advanced Materials, 2013, 25, 2641-2660.	11.1	522
29	Highly Durable and Active PtFe Nanocatalyst for Electrochemical Oxygen Reduction Reaction. Journal of the American Chemical Society, 2015, 137, 15478-15485.	6.6	517
30	Upconverting nanoparticles: a versatile platform for wide-field two-photon microscopy and multi-modal in vivo imaging. Chemical Society Reviews, 2015, 44, 1302-1317.	18.7	504
31	Reversible and cooperative photoactivation of single-atom Cu/TiO2 photocatalysts. Nature Materials, 2019, 18, 620-626.	13.3	501
32	Transparent and Stretchable Interactive Human Machine Interface Based on Patterned Graphene Heterostructures. Advanced Functional Materials, 2015, 25, 375-383.	7.8	496
33	Mesoporous Silica-Coated Hollow Manganese Oxide Nanoparticles as Positive <i>T</i> ₁ Contrast Agents for Labeling and MRI Tracking of Adipose-Derived Mesenchymal Stem Cells. Journal of the American Chemical Society, 2011, 133, 2955-2961.	6.6	491
34	Formation Mechanisms of Uniform Nanocrystals via Hotâ€Injection and Heatâ€Up Methods. Small, 2011, 7, 2685-2702.	5.2	486
35	Enzymeâ€Based Glucose Sensor: From Invasive to Wearable Device. Advanced Healthcare Materials, 2018, 7, e1701150.	3.9	483
36	Mitochondria-Targeting Ceria Nanoparticles as Antioxidants for Alzheimer's Disease. ACS Nano, 2016, 10, 2860-2870.	7.3	481

3

#	Article	IF	CITATIONS
37	Designed Fabrication of Multifunctional Magnetic Gold Nanoshells and Their Application to Magnetic Resonance Imaging and Photothermal Therapy. Angewandte Chemie - International Edition, 2006, 45, 7754-7758.	7.2	475
38	Galvanic Replacement Reactions in Metal Oxide Nanocrystals. Science, 2013, 340, 964-968.	6.0	472
39	Ceria Nanoparticles that can Protect against Ischemic Stroke. Angewandte Chemie - International Edition, 2012, 51, 11039-11043.	7.2	464
40	Stretchable Heater Using Ligand-Exchanged Silver Nanowire Nanocomposite for Wearable Articular Thermotherapy. ACS Nano, 2015, 9, 6626-6633.	7.3	462
41	Multifunctional Tumor pH-Sensitive Self-Assembled Nanoparticles for Bimodal Imaging and Treatment of Resistant Heterogeneous Tumors. Journal of the American Chemical Society, 2014, 136, 5647-5655.	6.6	452
42	Large-Scale Synthesis of Carbon-Shell-Coated FeP Nanoparticles for Robust Hydrogen Evolution Reaction Electrocatalyst. Journal of the American Chemical Society, 2017, 139, 6669-6674.	6.6	451
43	Synthesis of Uniform Ferrimagnetic Magnetite Nanocubes. Journal of the American Chemical Society, 2009, 131, 454-455.	6.6	434
44	Chemical Synthesis and Assembly of Uniformly Sized Iron Oxide Nanoparticles for Medical Applications. Accounts of Chemical Research, 2015, 48, 1276-1285.	7.6	428
45	Ni/NiO Core/Shell Nanoparticles for Selective Binding and Magnetic Separation of Histidine-Tagged Proteins. Journal of the American Chemical Society, 2006, 128, 10658-10659.	6.6	425
46	Colloidal Chemical Synthesis and Formation Kinetics of Uniformly Sized Nanocrystals of Metals, Oxides, and Chalcogenides. Accounts of Chemical Research, 2008, 41, 1696-1709.	7.6	420
47	Kinetics of Monodisperse Iron Oxide Nanocrystal Formation by "Heating-Up―Process. Journal of the American Chemical Society, 2007, 129, 12571-12584.	6.6	407
48	Electric Double-Layer Capacitor Performance of a New Mesoporous Carbon. Journal of the Electrochemical Society, 2000, 147, 2507.	1.3	405
49	Synthesis of Monodisperse Palladium Nanoparticles. Nano Letters, 2003, 3, 1289-1291.	4.5	403
50	Wrap–bake–peelÂprocessÂforÂnanostructural transformation fromÂβ-FeOOHÂnanorodsÂto biocompatible iron oxide nanocapsules. Nature Materials, 2008, 7, 242-247.	13.3	401
51	Chemical Design of Biocompatible Iron Oxide Nanoparticles for Medical Applications. Small, 2013, 9, 1450-1466.	5.2	401
52	High-performance stretchable conductive nanocomposites: materials, processes, and device applications. Chemical Society Reviews, 2019, 48, 1566-1595.	18.7	400
53	Design Principle of Fe–N–C Electrocatalysts: How to Optimize Multimodal Porous Structures?. Journal of the American Chemical Society, 2019, 141, 2035-2045.	6.6	383
54	Synthesis of new nanoporous carbon materials using nanostructured silica materials as templates. Journal of Materials Chemistry, 2004, 14, 478.	6.7	379

#	Article	IF	CITATIONS
55	Synthesis and biomedical applications of hollow nanostructures. Nano Today, 2009, 4, 359-373.	6.2	370
56	Theranostic Probe Based on Lanthanideâ€Doped Nanoparticles for Simultaneous In Vivo Dualâ€Modal Imaging and Photodynamic Therapy. Advanced Materials, 2012, 24, 5755-5761.	11.1	367
57	Nonclassical nucleation and growth of inorganic nanoparticles. Nature Reviews Materials, 2016, 1, .	23.3	343
58	Self-Assembled Fe ₃ O ₄ Nanoparticle Clusters as High-Performance Anodes for Lithium Ion Batteries via Geometric Confinement. Nano Letters, 2013, 13, 4249-4256.	4.5	334
59	Synergistic Oxygen Generation and Reactive Oxygen Species Scavenging by Manganese Ferrite/Ceria Co-decorated Nanoparticles for Rheumatoid Arthritis Treatment. ACS Nano, 2019, 13, 3206-3217.	7.3	325
60	Large-Scale Synthesis of Bioinert Tantalum Oxide Nanoparticles for X-ray Computed Tomography Imaging and Bimodal Image-Guided Sentinel Lymph Node Mapping. Journal of the American Chemical Society, 2011, 133, 5508-5515.	6.6	316
61	Fabricâ€Based Integrated Energy Devices for Wearable Activity Monitors. Advanced Materials, 2014, 26, 6329-6334.	11.1	311
62	Large‧cale Soft Colloidal Template Synthesis of 1.4â€nm Thick CdSe Nanosheets. Angewandte Chemie - International Edition, 2009, 48, 6861-6864.	7.2	298
63	Synthesis of Highly Crystalline and Monodisperse Cobalt Ferrite Nanocrystals. Journal of Physical Chemistry B, 2002, 106, 6831-6833.	1.2	297
64	Arginine-Rich Manganese Silicate Nanobubbles as a Ferroptosis-Inducing Agent for Tumor-Targeted Theranostics. ACS Nano, 2018, 12, 12380-12392.	7.3	292
65	High-Performance Direct Methanol Fuel Cell Electrodes using Solid-Phase-Synthesized Carbon Nanocoils. Angewandte Chemie - International Edition, 2003, 42, 4352-4356.	7.2	286
66	Chitosan Oligosaccharide-Stabilized Ferrimagnetic Iron Oxide Nanocubes for Magnetically Modulated Cancer Hyperthermia. ACS Nano, 2012, 6, 5266-5273.	7.3	286
67	Generalized Synthesis of Metal Phosphide Nanorods via Thermal Decomposition of Continuously Delivered Metalâ^'Phosphine Complexes Using a Syringe Pump. Journal of the American Chemical Society, 2005, 127, 8433-8440.	6.6	282
68	Fabrication of Novel Mesocellular Carbon Foams with Uniform Ultralarge Mesopores. Journal of the American Chemical Society, 2001, 123, 5146-5147.	6.6	276
69	Low-Temperature Solution-Phase Synthesis of Quantum Well Structured CdSe Nanoribbons. Journal of the American Chemical Society, 2006, 128, 5632-5633.	6.6	270
70	Water-Dispersible Ferrimagnetic Iron Oxide Nanocubes with Extremely High <i>r</i> ₂ Relaxivity for Highly Sensitive in Vivo MRI of Tumors. Nano Letters, 2012, 12, 3127-3131.	4.5	269
71	Ceria–Zirconia Nanoparticles as an Enhanced Multiâ€Antioxidant for Sepsis Treatment. Angewandte Chemie - International Edition, 2017, 56, 11399-11403.	7.2	261
72	Flexible quantum dot light-emitting diodes for next-generation displays. Npj Flexible Electronics, 2018, 2, .	5.1	261

#	Article	IF	CITATIONS
73	Fabrication of New Nanoporous Carbons through Silica Templates and Their Application to the Adsorption of Bulky Dyes. Chemistry of Materials, 2000, 12, 3337-3341.	3.2	246
74	Surface design of magnetic nanoparticles for stimuli-responsive cancer imaging and therapy. Biomaterials, 2017, 136, 98-114.	5.7	244
75	High-resolution three-photon biomedical imaging using doped ZnS nanocrystals. Nature Materials, 2013, 12, 359-366.	13.3	240
76	Large-Scale Nonhydrolytic Sol-Gel Synthesis of Uniform-Sized Ceria Nanocrystals with Spherical, Wire, and Tadpole Shapes. Angewandte Chemie - International Edition, 2005, 44, 7411-7414.	7.2	238
77	Device-assisted transdermal drug delivery. Advanced Drug Delivery Reviews, 2018, 127, 35-45.	6.6	237
78	Nanostructured T1 MRI contrast agents. Journal of Materials Chemistry, 2009, 19, 6267.	6.7	233
79	Direct Synthesis of Self-Assembled Ferrite/Carbon Hybrid Nanosheets for High Performance Lithium-Ion Battery Anodes. Journal of the American Chemical Society, 2012, 134, 15010-15015.	6.6	231
80	Longâ€Term Realâ€Time Tracking of Lanthanide Ion Doped Upconverting Nanoparticles in Living Cells. Angewandte Chemie - International Edition, 2011, 50, 6093-6097.	7.2	230
81	Generalized Fabrication of Multifunctional Nanoparticle Assemblies on Silica Spheres. Angewandte Chemie - International Edition, 2006, 45, 4789-4793.	7.2	227
82	Facile Synthesis of Various Phosphine-Stabilized Monodisperse Palladium Nanoparticles through the Understanding of Coordination Chemistry of the Nanoparticles. Nano Letters, 2004, 4, 1147-1151.	4.5	226
83	Giant Zeeman splitting in nucleation-controlled doped CdSe:Mn2+ quantum nanoribbons. Nature Materials, 2010, 9, 47-53.	13.3	222
84	Multifunctional Fe ₃ O ₄ /TaO _{<i>x</i>} Core/Shell Nanoparticles for Simultaneous Magnetic Resonance Imaging and X-ray Computed Tomography. Journal of the American Chemical Society, 2012, 134, 10309-10312.	6.6	219
85	Synthesis and Biomedical Applications of Multifunctional Nanoparticles. Advanced Materials, 2018, 30, e1802309.	11.1	216
86	Designed Assembly and Integration of Colloidal Nanocrystals for Device Applications. Advanced Materials, 2016, 28, 1176-1207.	11.1	211
87	Synthesis of Uniform Hollow Oxide Nanoparticles through Nanoscale Acid Etching. Nano Letters, 2008, 8, 4252-4258.	4.5	210
88	Ceria Nanoparticle Systems for Selective Scavenging of Mitochondrial, Intracellular, and Extracellular Reactive Oxygen Species in Parkinson's Disease. Angewandte Chemie - International Edition, 2018, 57, 9408-9412.	7.2	204
89	Bioresorbable Electronic Stent Integrated with Therapeutic Nanoparticles for Endovascular Diseases. ACS Nano, 2015, 9, 5937-5946.	7.3	203
90	Synthesis, Characterization, and Self-Assembly of Pencil-Shaped CoO Nanorods. Journal of the American Chemical Society, 2006, 128, 9753-9760.	6.6	201

#	Article	IF	CITATIONS
91	One-Pot Synthesis of Copperâ^'Indium Sulfide Nanocrystal Heterostructures with Acorn, Bottle, and Larva Shapes. Journal of the American Chemical Society, 2006, 128, 2520-2521.	6.6	192
92	Facile scalable synthesis of magnetitenanocrystals embedded in carbon matrix as superior anode materials for lithium-ion batteries. Chemical Communications, 2010, 46, 118-120.	2.2	192
93	Ultrathin Quantum Dot Display Integrated with Wearable Electronics. Advanced Materials, 2017, 29, 1700217.	11.1	187
94	Highly conductive and elastic nanomembrane for skin electronics. Science, 2021, 373, 1022-1026.	6.0	186
95	Recent Advances in Electrochemical Oxygen Reduction to H ₂ O ₂ : Catalyst and Cell Design. ACS Energy Letters, 2020, 5, 1881-1892.	8.8	185
96	Magnetosome-like ferrimagnetic iron oxide nanocubes for highly sensitive MRI of single cells and transplanted pancreatic islets. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 2662-2667.	3.3	183
97	Synthesis of Hollow Iron Nanoframes. Journal of the American Chemical Society, 2007, 129, 5812-5813.	6.6	182
98	Highly Sensitive Diagnosis of Small Hepatocellular Carcinoma Using pH-Responsive Iron Oxide Nanocluster Assemblies. Journal of the American Chemical Society, 2018, 140, 10071-10074.	6.6	182
99	Curved neuromorphic image sensor array using a MoS2-organic heterostructure inspired by the human visual recognition system. Nature Communications, 2020, 11, 5934.	5.8	182
100	Electromechanical cardioplasty using a wrapped elasto-conductive epicardial mesh. Science Translational Medicine, 2016, 8, 344ra86.	5.8	181
101	Mesenchymal stem cell-derived magnetic extracellular nanovesicles for targeting and treatment of ischemic stroke. Biomaterials, 2020, 243, 119942.	5.7	176
102	Highly Efficient Copper–Indium–Selenide Quantum Dot Solar Cells: Suppression of Carrier Recombination by Controlled ZnS Overlayers. ACS Nano, 2015, 9, 11286-11295.	7.3	175
103	Cephalopodâ€Inspired Miniaturized Suction Cups for Smart Medical Skin. Advanced Healthcare Materials, 2016, 5, 80-87.	3.9	175
104	Surface ligands in synthesis, modification, assembly and biomedical applications of nanoparticles. Nano Today, 2014, 9, 457-477.	6.2	169
105	Simple and Generalized Synthesis of Oxideâ^'Metal Heterostructured Nanoparticles and their Applications in Multimodal Biomedical Probes. Journal of the American Chemical Society, 2008, 130, 15573-15580.	6.6	162
106	Direct Synthesis of Intermetallic Platinum–Alloy Nanoparticles Highly Loaded on Carbon Supports for Efficient Electrocatalysis. Journal of the American Chemical Society, 2020, 142, 14190-14200.	6.6	160
107	An endoscope with integrated transparent bioelectronics and theranostic nanoparticles for colon cancer treatment. Nature Communications, 2015, 6, 10059.	5.8	159
108	Extremely Vivid, Highly Transparent, and Ultrathin Quantum Dot Lightâ€Emitting Diodes. Advanced Materials, 2018, 30, 1703279.	11.1	157

#	Article	IF	CITATIONS
109	Thermally Controlled, Patterned Graphene Transfer Printing for Transparent and Wearable Electronic/Optoelectronic System. Advanced Functional Materials, 2015, 25, 7109-7118.	7.8	155
110	Ultraâ€Wideband Multiâ€Dyeâ€Sensitized Upconverting Nanoparticles for Information Security Application. Advanced Materials, 2017, 29, 1603169.	11.1	153
111	Colloidal Synthesis of Uniform‣ized Molybdenum Disulfide Nanosheets for Wafer‣cale Flexible Nonvolatile Memory. Advanced Materials, 2016, 28, 9326-9332.	11.1	151
112	Wearable Force Touch Sensor Array Using a Flexible and Transparent Electrode. Advanced Functional Materials, 2017, 27, 1605286.	7.8	151
113	Iron oxide nanoclusters for T 1 magnetic resonance imaging of non-human primates. Nature Biomedical Engineering, 2017, 1, 637-643.	11.6	151
114	Flexible, sticky, and biodegradable wireless device for drug delivery to brain tumors. Nature Communications, 2019, 10, 5205.	5.8	148
115	Parallel Comparative Studies on Mouse Toxicity of Oxide Nanoparticle- and Gadolinium-Based T1 MRI Contrast Agents. ACS Nano, 2015, 9, 12425-12435.	7.3	145
116	Tissue-like skin-device interface for wearable bioelectronics by using ultrasoft, mass-permeable, and low-impedance hydrogels. Science Advances, 2021, 7, .	4.7	144
117	Multifunctional Wearable System that Integrates Sweatâ€Based Sensing and Vital‣ign Monitoring to Estimate Preâ€∤Postâ€Exercise Glucose Levels. Advanced Functional Materials, 2018, 28, 1805754.	7.8	143
118	A wearable multiplexed silicon nonvolatile memory array using nanocrystal charge confinement. Science Advances, 2016, 2, e1501101.	4.7	139
119	Dual Roles of Graphene Oxide in Chondrogenic Differentiation of Adult Stem Cells: Cellâ€Adhesion Substrate and Growth Factorâ€Delivery Carrier. Advanced Functional Materials, 2014, 24, 6455-6464.	7.8	138
120	Dynamically Reversible Iron Oxide Nanoparticle Assemblies for Targeted Amplification of T1-Weighted Magnetic Resonance Imaging of Tumors. Nano Letters, 2019, 19, 4213-4220.	4.5	137
121	Therapeutic Efficacy-Potentiated and Diseased Organ-Targeting Nanovesicles Derived from Mesenchymal Stem Cells for Spinal Cord Injury Treatment. Nano Letters, 2018, 18, 4965-4975.	4.5	133
122	Filtration-Free Recyclable Catalytic Asymmetric Dihydroxylation Using a Ligand Immobilized on Magnetic Mesocellular Mesoporous Silica. Advanced Synthesis and Catalysis, 2006, 348, 41-46.	2.1	130
123	Applications of inorganic nanoparticles as therapeutic agents. Nanotechnology, 2014, 25, 012001.	1.3	129
124	Simple synthesis of Pd–Fe3O4 heterodimer nanocrystals and their application as a magnetically recyclable catalyst for Suzuki cross-coupling reactions. Physical Chemistry Chemical Physics, 2011, 13, 2512.	1.3	126
125	Stretchable and Transparent Biointerface Using Cellâ€Sheet–Graphene Hybrid for Electrophysiology and Therapy of Skeletal Muscle. Advanced Functional Materials, 2016, 26, 3207-3217.	7.8	123
126	Defect Engineering for High-Performance n-Type PbSe Thermoelectrics. Journal of the American Chemical Society, 2018, 140, 9282-9290.	6.6	123

#	Article	IF	CITATIONS
127	Iron Oxide Nanoparticle-Mediated Development of Cellular Gap Junction Crosstalk to Improve Mesenchymal Stem Cells' Therapeutic Efficacy for Myocardial Infarction. ACS Nano, 2015, 9, 2805-2819.	7.3	122
128	Enhanced Chemodynamic Therapy by Cu–Fe Peroxide Nanoparticles: Tumor Microenvironment-Mediated Synergistic Fenton Reaction. ACS Nano, 2022, 16, 2535-2545.	7.3	120
129	Multipleâ€Interaction Ligands Inspired by Mussel Adhesive Protein: Synthesis of Highly Stable and Biocompatible Nanoparticles. Angewandte Chemie - International Edition, 2011, 50, 11360-11365.	7.2	117
130	Fully Stretchable Optoelectronic Sensors Based on Colloidal Quantum Dots for Sensing Photoplethysmographic Signals. ACS Nano, 2017, 11, 5992-6003.	7.3	115
131	Hybrid Cellular Nanosheets for High-Performance Lithium-Ion Battery Anodes. Journal of the American Chemical Society, 2015, 137, 11954-11961.	6.6	114
132	Fabrication of a novel polypyrrole/poly(methyl methacrylate) coaxial nanocable using mesoporous silica as a nanoreactor. Chemical Communications, 2001, , 83-84.	2.2	113
133	Simple one-pot synthesis of Rh–Fe3O4 heterodimer nanocrystals and their applications to a magnetically recyclable catalyst for efficient and selective reduction of nitroarenes and alkenes. Chemical Communications, 2011, 47, 3601.	2.2	112
134	Facile and economical synthesis of hierarchical carbon-coated magnetite nanocomposite particles and their applications in lithium ion battery anodes. Energy and Environmental Science, 2012, 5, 9528.	15.6	111
135	Enhancing p-Type Thermoelectric Performances of Polycrystalline SnSe via Tuning Phase Transition Temperature. Journal of the American Chemical Society, 2017, 139, 10887-10896.	6.6	110
136	Inorganic nanoparticles with enzyme-mimetic activities for biomedical applications. Coordination Chemistry Reviews, 2020, 403, 213092.	9.5	110
137	Nanovesicles derived from iron oxide nanoparticles–incorporated mesenchymal stem cells for cardiac repair. Science Advances, 2020, 6, eaaz0952.	4.7	109
138	Colloidal cobalt nanoparticles: a highly active and reusable Pauson–Khand catalyst. Chemical Communications, 2001, , 2212-2213.	2.2	104
139	High-Performance n-Type PbSe–Cu ₂ Se Thermoelectrics through Conduction Band Engineering and Phonon Softening. Journal of the American Chemical Society, 2018, 140, 15535-15545.	6.6	103
140	Critical differences in 3D atomic structure of individual ligand-protected nanocrystals in solution. Science, 2020, 368, 60-67.	6.0	103
141	Toward Full-Color Electroluminescent Quantum Dot Displays. Nano Letters, 2021, 21, 26-33.	4.5	103
142	pH-Sensitive Pt Nanocluster Assembly Overcomes Cisplatin Resistance and Heterogeneous Stemness of Hepatocellular Carcinoma. ACS Central Science, 2016, 2, 802-811.	5.3	101
143	Dimension ontrolled Synthesis of CdS Nanocrystals: From 0D Quantum Dots to 2D Nanoplates. Small, 2012, 8, 2394-2402.	5.2	99
144	Largeâ€Scale Synthesis and Medical Applications of Uniformâ€Sized Metal Oxide Nanoparticles. Advanced Materials, 2018, 30, e1704290.	11.1	97

#	Article	IF	CITATIONS
145	In Vivo Micro-CT Imaging of Human Mesenchymal Stem Cells Labeled with Gold-Poly- <scp>l</scp> -Lysine Nanocomplexes. Advanced Functional Materials, 2017, 27, 1604213.	7.8	95
146	Versatile PEC-derivatized phosphine oxide ligands for water-dispersible metal oxide nanocrystals. Chemical Communications, 2007, , 5167.	2.2	93
147	Large-Scale Synthesis of Ultrathin Manganese Oxide Nanoplates and Their Applications to T1 MRI Contrast Agents. Chemistry of Materials, 2011, 23, 3318-3324.	3.2	92
148	Size Dependence of Metal–Insulator Transition in Stoichiometric Fe ₃ O ₄ Nanocrystals. Nano Letters, 2015, 15, 4337-4342.	4.5	92
149	Microporosity ontrolled Synthesis of Heteroatom Codoped Carbon Nanocages by Wrapâ€Bakeâ€&ublime Approach for Flexible Allâ€&olidâ€&tateâ€&upercapacitors. Advanced Functional Materials, 2018, 28, 1803786.	7.8	92
150	Route to the Smallest Doped Semiconductor: Mn ²⁺ -Doped (CdSe) ₁₃ Clusters. Journal of the American Chemical Society, 2015, 137, 12776-12779.	6.6	91
151	Deep Tumor Penetration of Drug-Loaded Nanoparticles by Click Reaction-Assisted Immune Cell Targeting Strategy. Journal of the American Chemical Society, 2019, 141, 13829-13840.	6.6	88
152	Electronic interaction between transition metal single-atoms and anatase TiO ₂ boosts CO ₂ photoreduction with H ₂ O. Energy and Environmental Science, 2022, 15, 601-609.	15.6	88
153	Magnetite/Ceria Nanoparticle Assemblies for Extracorporeal Cleansing of Amyloidâ€Î² in Alzheimer's Disease. Advanced Materials, 2019, 31, e1807965.	11.1	87
154	Extraordinary Off-Stoichiometric Bismuth Telluride for Enhanced n-Type Thermoelectric Power Factor. Journal of the American Chemical Society, 2016, 138, 14458-14468.	6.6	85
155	Engineering Titanium Dioxide Nanostructures for Enhanced Lithium-Ion Storage. Journal of the American Chemical Society, 2018, 140, 16676-16684.	6.6	85
156	Chemical Synthesis, Doping, and Transformation of Magic-Sized Semiconductor Alloy Nanoclusters. Journal of the American Chemical Society, 2017, 139, 6761-6770.	6.6	84
157	A sensitive and specific nanosensor for monitoring extracellular potassium levels in the brain. Nature Nanotechnology, 2020, 15, 321-330.	15.6	83
158	Epitaxially Strained CeO ₂ /Mn ₃ O ₄ Nanocrystals as an Enhanced Antioxidant for Radioprotection. Advanced Materials, 2020, 32, e2001566.	11.1	79
159	Multifunctional mesoporous silica nanocomposite nanoparticles for pH controlled drug release and dual modal imaging. Journal of Materials Chemistry, 2011, 21, 16869.	6.7	78
160	Liquidâ€Phase Transmission Electron Microscopy for Studying Colloidal Inorganic Nanoparticles. Advanced Materials, 2018, 30, 1703316.	11.1	77
161	Amorphous-Phase-Mediated Crystallization of Ni Nanocrystals Revealed by High-Resolution Liquid-Phase Electron Microscopy. Journal of the American Chemical Society, 2019, 141, 763-768.	6.6	76
162	Ordered mesoporous silica nanoparticles with and without embedded iron oxide nanoparticles: structure evolution during synthesis. Journal of Materials Chemistry, 2010, 20, 7807.	6.7	74

#	Article	IF	CITATIONS
163	Wearable Fall Detector using Integrated Sensors and Energy Devices. Scientific Reports, 2015, 5, 17081.	1.6	74
164	Recent development of nanoparticles for molecular imaging. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2017, 375, 20170022.	1.6	74
165	Designing Atomically Dispersed Au on Tensile-Strained Pd for Efficient CO ₂ Electroreduction to Formate. Journal of the American Chemical Society, 2021, 143, 5386-5395.	6.6	74
166	Magnetically separable carbon nanocomposite catalysts for efficient nitroarene reduction and Suzuki reactions. Applied Catalysis A: General, 2014, 476, 133-139.	2.2	73
167	[Cu ₃₂ (PET) ₂₄ H ₈ Cl ₂](PPh ₄) ₂ : A Copper Hydride Nanocluster with a Bisquare Antiprismatic Core. Journal of the American Chemical Society, 2020, 142, 13974-13981.	6.6	73
168	Highly Fluorescent Gold Cluster Assembly. Journal of the American Chemical Society, 2021, 143, 326-334.	6.6	73
169	Multifunctional Cell-Culture Platform for Aligned Cell Sheet Monitoring, Transfer Printing, and Therapy. ACS Nano, 2015, 9, 2677-2688.	7.3	72
170	Soft Bioelectronics Based on Nanomaterials. Chemical Reviews, 2022, 122, 5068-5143.	23.0	72
171	Synthesis of Uniformly Sized Manganese Oxide Nanocrystals with Various Sizes and Shapes and Characterization of Their <i>T</i> ₁ Magnetic Resonance Relaxivity. European Journal of Inorganic Chemistry, 2012, 2012, 2148-2155.	1.0	71
172	Cd ₁₂ Ag ₃₂ (SePh) ₃₆ : Non-Noble Metal Doped Silver Nanoclusters. Journal of the American Chemical Society, 2019, 141, 8422-8425.	6.6	71
173	Copper–indium–selenide quantum dot-sensitized solar cells. Physical Chemistry Chemical Physics, 2013, 15, 20517.	1.3	69
174	Multi-modal transfection agent based on monodisperse magnetic nanoparticles for stem cell gene delivery and tracking. Biomaterials, 2014, 35, 7239-7247.	5.7	69
175	Recent Advances in Inorganic Nanoparticle-Based NIR Luminescence Imaging: Semiconductor Nanoparticles and Lanthanide Nanoparticles. Bioconjugate Chemistry, 2017, 28, 115-123.	1.8	69
176	Multifunctional nanoparticles as a tissue adhesive and an injectable marker for image-guided procedures. Nature Communications, 2017, 8, 15807.	5.8	67
177	Nanomaterialâ€Based Soft Electronics for Healthcare Applications. ChemNanoMat, 2016, 2, 1006-1017.	1.5	65
178	Advances in the Colloidal Synthesis of Two-Dimensional Semiconductor Nanoribbons. Chemistry of Materials, 2013, 25, 1190-1198.	3.2	63
179	Efficient Photoluminescence of Mn ²⁺ -Doped ZnS Quantum Dots Excited by Two-Photon Absorption in Near-Infrared Window II. Journal of Physical Chemistry C, 2013, 117, 20905-20911.	1.5	61
180	Experimental studies of strong dipolar interparticle interaction in monodisperse Fe3O4 nanoparticles. Applied Physics Letters, 2007, 91, .	1.5	60

#	Article	IF	CITATIONS
181	General and Facile Coating of Single Cells via Mild Reduction. Journal of the American Chemical Society, 2018, 140, 1199-1202.	6.6	60
182	Ferrimagnetic Nanochainsâ€Based Mesenchymal Stem Cell Engineering for Highly Efficient Postâ€Stroke Recovery. Advanced Functional Materials, 2019, 29, 1900603.	7.8	59
183	Design and synthesis of multigrain nanocrystals via geometric misfit strain. Nature, 2020, 577, 359-363.	13.7	59
184	Molecular-Level Understanding of Continuous Growth from Iron-Oxo Clusters to Iron Oxide Nanoparticles. Journal of the American Chemical Society, 2019, 141, 7037-7045.	6.6	58
185	Advances in drug delivery technology for the treatment of glioblastoma multiforme. Journal of Controlled Release, 2020, 328, 350-367.	4.8	58
186	Sizing by Weighing: Characterizing Sizes of Ultrasmall-Sized Iron Oxide Nanocrystals Using MALDI-TOF Mass Spectrometry. Journal of the American Chemical Society, 2013, 135, 2407-2410.	6.6	57
187	Direct Observation of Redox Mediator-Assisted Solution-Phase Discharging of Li–O ₂ Battery by Liquid-Phase Transmission Electron Microscopy. Journal of the American Chemical Society, 2019, 141, 8047-8052.	6.6	54
188	Noble Metalâ€Based Multimetallic Nanoparticles for Electrocatalytic Applications. Advanced Science, 2022, 9, e2104054.	5.6	54
189	Cu Intercalation and Br Doping to Thermoelectric SnSe ₂ Lead to Ultrahigh Electron Mobility and Temperatureâ€Independent Power Factor. Advanced Functional Materials, 2020, 30, 1908405.	7.8	53
190	Sulfur-Modified Graphitic Carbon Nitride Nanostructures as an Efficient Electrocatalyst for Water Oxidation. Small, 2017, 13, 1603893.	5.2	52
191	Transformation of hydrophobic iron oxide nanoparticles to hydrophilic and biocompatible maghemite nanocrystals for use as highly efficient MRI contrast agent. Journal of Materials Chemistry, 2011, 21, 11472.	6.7	49
192	Oxide Nanomembrane Hybrids with Enhanced Mechano―and Thermo‣ensitivity for Semitransparent Epidermal Electronics. Advanced Healthcare Materials, 2015, 4, 992-997.	3.9	49
193	Digital Doping in Magic-Sized CdSe Clusters. ACS Nano, 2016, 10, 7135-7141.	7.3	49
194	Multifunctional Injectable Hydrogel for <i>In Vivo</i> Diagnostic and Therapeutic Applications. ACS Nano, 2022, 16, 554-567.	7.3	49
195	Advances in Soft Bioelectronics for Brain Research and Clinical Neuroengineering. Matter, 2020, 3, 1923-1947.	5.0	48
196	[Pt ₂ Cu ₃₄ (PET) ₂₂ Cl ₄] ^{2–} : An Atomically Precise, 10-Electron PtCu Bimetal Nanocluster with a Direct Pt–Pt Bond. Journal of the American Chemical Society, 2021, 143, 12100-12107.	6.6	47
197	Sea urchin shaped carbon nanostructured materials: carbon nanotubes immobilized on hollow carbon spheres. Journal of Materials Chemistry, 2006, 16, 2984.	6.7	46
198	Multiplexible Wash-Free Immunoassay Using Colloidal Assemblies of Magnetic and Photoluminescent Nanoparticles. ACS Nano, 2017, 11, 8448-8455.	7.3	46

#	Article	IF	CITATIONS
199	Atomic Structure Modification of Fe‒N‒C Catalysts via Morphology Engineering of Graphene for Enhanced Conversion Kinetics of Lithium–Sulfur Batteries. Advanced Functional Materials, 2022, 32, .	7.8	45
200	Magnetically-separable and highly-stable enzyme system based on crosslinked enzyme aggregates shipped in magnetite-coated mesoporous silica. Journal of Materials Chemistry, 2009, 19, 7864.	6.7	44
201	Stretchable Lowâ€Impedance Nanocomposite Comprised of Ag–Au Core–Shell Nanowires and Pt Black for Epicardial Recording and Stimulation. Advanced Materials Technologies, 2020, 5, 1900768.	3.0	43
202	Localized Delivery of Theranostic Nanoparticles and Highâ€Energy Photons using Microneedlesâ€onâ€Bioelectronics. Advanced Materials, 2021, 33, e2100425.	11.1	43
203	Three-dimensional foldable quantum dot light-emitting diodes. Nature Electronics, 2021, 4, 671-680.	13.1	43
204	Highly luminescent and catalytically active suprastructures of magic-sized semiconductor nanoclusters. Nature Materials, 2021, 20, 650-657.	13.3	42
205	Stretchable colour-sensitive quantum dot nanocomposites for shape-tunable multiplexed phototransistor arrays. Nature Nanotechnology, 2022, 17, 849-856.	15.6	42
206	Near-Infrared Voltage Nanosensors Enable Real-Time Imaging of Neuronal Activities in Mice and Zebrafish. Journal of the American Chemical Society, 2020, 142, 7858-7867.	6.6	41
207	Revealing Kinetics of Two-Electron Oxygen Reduction Reaction at Single-Molecule Level. Journal of the American Chemical Society, 2020, 142, 13201-13209.	6.6	39
208	Durable and Fatigueâ€Resistant Soft Peripheral Neuroprosthetics for In Vivo Bidirectional Signaling. Advanced Materials, 2021, 33, e2007346.	11.1	37
209	Single-atom M–N–C catalysts for oxygen reduction electrocatalysis. Trends in Chemistry, 2021, 3, 779-794.	4.4	37
210	Toxicological Risk Assessments of Iron Oxide Nanocluster- and Gadolinium-Based T1MRI Contrast Agents in Renal Failure Rats. ACS Nano, 2019, 13, 6801-6812.	7.3	36
211	Lighting up tumours. Nature Materials, 2014, 13, 122-124.	13.3	34
212	Ceria–Zirconia Nanoparticles as an Enhanced Multiâ€Antioxidant for Sepsis Treatment. Angewandte Chemie, 2017, 129, 11557-11561.	1.6	34
213	Ag ₄₄ (EBT) ₂₆ (TPP) ₄ Nanoclusters With Tailored Molecular and Electronic Structure. Angewandte Chemie - International Edition, 2021, 60, 9038-9044.	7.2	33
214	Highly selective Wacker oxidation of terminal olefins using magnetically recyclable Pd–Fe3O4 heterodimer nanocrystals. RSC Advances, 2013, 3, 16296.	1.7	32
215	Metastable hexagonal close-packed palladium hydride in liquid cell TEM. Nature, 2022, 603, 631-636.	13.7	31
216	Magic‧ized Stoichiometric II–VI Nanoclusters. Small, 2021, 17, e2002067.	5.2	30

#	Article	IF	CITATIONS
217	Structural Insights into Multiâ€Metal Spinel Oxide Nanoparticles for Boosting Oxygen Reduction Electrocatalysis. Advanced Materials, 2022, 34, e2107868.	11.1	30
218	Adaptive Selfâ€Organization of Nanomaterials Enables Strainâ€Insensitive Resistance of Stretchable Metallic Nanocomposites. Advanced Materials, 2022, 34, e2200980.	11.1	30
219	Sustainable nanotechnology. Chemical Society Reviews, 2015, 44, 5755-5757.	18.7	29
220	Roomâ€Temperature Vapor Deposition of Cobalt Nitride Nanofilms for Mesoscopic and Perovskite Solar Cells. Advanced Energy Materials, 2018, 8, 1703114.	10.2	29
221	Highly selective microglial uptake of ceria–zirconia nanoparticles for enhanced analgesic treatment of neuropathic pain. Nanoscale, 2019, 11, 19437-19447.	2.8	29
222	Wafer-Scale Production of Transition Metal Dichalcogenides and Alloy Monolayers by Nanocrystal Conversion for Large-Scale Ultrathin Flexible Electronics. Nano Letters, 2021, 21, 9153-9163.	4.5	29
223	Fabrication of novel mesoporous dimethylsiloxane-incorporated silicas. Chemical Communications, 2000, , 1487-1488.	2.2	28
224	Manipulating Nanoparticle Aggregates Regulates Receptor–Ligand Binding in Macrophages. Journal of the American Chemical Society, 2022, 144, 5769-5783.	6.6	28
225	Redox-Sensitive Facet Dependency in Etching of Ceria Nanocrystals Directly Observed by Liquid Cell TEM. Journal of the American Chemical Society, 2019, 141, 18395-18399.	6.6	27
226	Effect of interacting nanoparticles on the ordered morphology of block copolymer/nanoparticle mixtures. Journal of Polymer Science, Part B: Polymer Physics, 2006, 44, 3571-3579.	2.4	25
227	Operando Identification of the Chemical and Structural Origin of Li-Ion Battery Aging at Near-Ambient Temperature. Journal of the American Chemical Society, 2020, 142, 13406-13414.	6.6	24
228	Largeâ€Scale Synthesis of Water Dispersible Ceria Nanocrystals by a Simple Sol–Gel Process and Their Use as a Chemical Mechanical Planarization Slurry. European Journal of Inorganic Chemistry, 2008, 2008, 855-858.	1.0	23
229	Iron Oxide Nanoparticles: Chemical Design of Biocompatible Iron Oxide Nanoparticles for Medical Applications (Small 9–10/2013). Small, 2013, 9, 1449-1449.	5.2	23
230	New chiral heterogeneous catalysts based on mesoporous silica: asymmetric diethylzinc addition to benzaldehyde. Chemical Communications, 2000, , 31-32.	2.2	21
231	Co ²⁺ -Doping of Magic-Sized CdSe Clusters: Structural Insights via Ligand Field Transitions. Nano Letters, 2018, 18, 7350-7357.	4.5	21
232	Engineered collagen hydrogels for the sustained release of biomolecules and imaging agents: promoting the growth of human gingival cells. International Journal of Nanomedicine, 2014, 9, 5189.	3.3	20
233	Two-dimensional assemblies of ultrathin titanate nanosheets for lithium ion battery anodes. RSC Advances, 2014, 4, 12087.	1.7	20
234	Correlating 3D Surface Atomic Structure and Catalytic Activities of Pt Nanocrystals. Nano Letters, 2021, 21, 1175-1183.	4.5	20

#	Article	IF	CITATIONS
235	Recent Advances and Prospects in Colloidal Nanomaterials. Jacs Au, 2021, 1, 1849-1859.	3.6	20
236	Revealing Charge Transfer at the Interface of Spinel Oxide and Ceria during CO Oxidation. ACS Catalysis, 2021, 11, 1516-1527.	5.5	20
237	Recent Development of Flexible and Stretchable Supercapacitors Using Transition Metal Compounds as Electrode Materials. Small, 2021, 17, e2101974.	5.2	19
238	Endosome-triggered ion-releasing nanoparticles as therapeutics to enhance the angiogenic efficacy of human mesenchymal stem cells. Journal of Controlled Release, 2020, 324, 586-597.	4.8	18
239	Photodynamic Therapy: Responsive Assembly of Upconversion Nanoparticles for pHâ€Activated and Nearâ€infraredâ€Triggered Photodynamic Therapy of Deep Tumors (Adv. Mater. 35/2018). Advanced Materials, 2018, 30, 1870264.	11.1	17
240	Large scale and integrated platform for digital mass culture of anchorage dependent cells. Nature Communications, 2019, 10, 4824.	5.8	17
241	Electronic Band Engineering via MI ₃ (M = Sb, Bi) Doping Remarkably Enhances the Air Stability of Perovskite CsSnI ₃ . ACS Applied Energy Materials, 2020, 3, 10477-10484.	2.5	17
242	Zeolitic Imidazole Framework Sacrificial Template-Assisted Synthesis of NiCoP Nanocages Doped with Multiple Metals for High-Performance Hybrid Supercapacitors. ACS Applied Energy Materials, 2021, 4, 10553-10564.	2.5	17
243	Facile synthesis of manganese (II)-doped ZnSe nanocrystals with controlled dimensionality. Journal of Chemical Physics, 2019, 151, 244701.	1.2	15
244	Effect of polystyrene nanoplastics and their degraded forms on stem cell fate. Journal of Hazardous Materials, 2022, 430, 128411.	6.5	15
245	Facile and Scalable Synthesis of Whiskered Gold Nanosheets for Stretchable, Conductive, and Biocompatible Nanocomposites. ACS Nano, 2022, 16, 10431-10442.	7.3	14
246	Wearable Electronics: Transparent and Stretchable Interactive Human Machine Interface Based on Patterned Graphene Heterostructures (Adv. Funct. Mater. 3/2015). Advanced Functional Materials, 2015, 25, 374-374.	7.8	13
247	Giant thermal hysteresis in Verwey transition of single domain Fe3O4 nanoparticles. Scientific Reports, 2018, 8, 5092.	1.6	13
248	Enhanced hot electron generation by inverse metal–oxide interfaces on catalytic nanodiode. Faraday Discussions, 2019, 214, 353-364.	1.6	13
249	Role of the Precursor Composition in the Synthesis of Metal Ferrite Nanoparticles. Inorganic Chemistry, 2021, 60, 4261-4268.	1.9	13
250	Real-space imaging of nanoparticle transport and interaction dynamics by graphene liquid cell TEM. Science Advances, 2021, 7, eabi5419.	4.7	13
251	Synthesis of nanostructured P2-Na _{2/3} MnO ₂ for high performance sodium-ion batteries. Chemical Communications, 2019, 55, 4757-4760.	2.2	12
252	Ceria Nanoparticle Systems for Selective Scavenging of Mitochondrial, Intracellular, and Extracellular Reactive Oxygen Species in Parkinson's Disease. Angewandte Chemie, 2018, 130, 9552-9556.	1.6	11

#	Article	IF	CITATIONS
253	Oxygen-Vacancy-Driven Orbital Reconstruction at the Surface of TiO ₂ Core–Shell Nanostructures. Nano Letters, 2021, 21, 7953-7959.	4.5	11
254	Nanoconfinementâ€Controlled Synthesis of Highly Active, Multinary Nanoplatelet Catalysts from Lamellar Magicâ€Sized Nanocluster Templates. Advanced Functional Materials, 2021, 31, 2107447.	7.8	11
255	Electrochemical Activity Studies of Glucose Oxidase (GOx)-Based and Pyranose Oxidase (POx)-Based Electrodes in Mesoporous Carbon: Toward Biosensor and Biofuel Cell Applications. Electroanalysis, 2014, 26, 2075-2079.	1.5	10
256	Self-assembly for electronics. MRS Bulletin, 2020, 45, 807-814.	1.7	10
257	Slow oxidation of magnetite nanoparticles elucidates the limits of the Verwey transition. Nature Communications, 2021, 12, 6356.	5.8	10
258	Recent progress in liquid embolic agents. Biomaterials, 2022, 287, 121634.	5.7	10
259	Optical absorption and photoluminescence properties of the PPV nanotubes and nanowires. Macromolecular Symposia, 2003, 201, 119-126.	0.4	9
260	One-Pot Heterointerfacial Metamorphosis for Synthesis and Control of Widely Varying Heterostructured Nanoparticles. Journal of the American Chemical Society, 2021, 143, 3383-3392.	6.6	9
261	Systematic Approach to Designing a Highly Efficient Core–Shell Electrocatalyst for N ₂ O Reduction. ACS Catalysis, 2021, 11, 15089-15097.	5.5	9
262	Microscopic States and the Verwey Transition of Magnetite Nanocrystals Investigated by Nuclear Magnetic Resonance. Nano Letters, 2018, 18, 1745-1750.	4.5	7
263	Exciton-driven change of phonon modes causes strong temperature dependent bandgap shift in nanoclusters. Nature Communications, 2020, 11, 4127.	5.8	7
264	High photoluminescence from self-assembled Ag2Cl2(dppe)2 clusters through metallophilic interactions. Journal of Chemical Physics, 2021, 155, 014307.	1.2	7
265	Highly Efficient Photoelectrochemical Hydrogen Production Using Nontoxic Culn _{1.5} Se ₃ Quantum Dots with ZnS/SiO ₂ Double Overlayers. ACS Applied Materials & Interfaces, 2022, 14, 603-610.	4.0	7
266	Ag 44 (EBT) 26 (TPP) 4 Nanoclusters With Tailored Molecular and Electronic Structure. Angewandte Chemie, 2021, 133, 9120-9126.	1.6	6
267	Self-supported mesoscopic tin oxide nanofilms for electrocatalytic reduction of carbon dioxide to formate. Chemical Communications, 2021, 57, 3445-3448.	2.2	5
268	To inorganic nanoparticles via nanoclusters: Nonclassical nucleation and growth pathway. Bulletin of the Korean Chemical Society, 2021, 42, 1386-1399.	1.0	5
269	Synthesis and catalytic applications of uniform-sized nanocrystals. Studies in Surface Science and Catalysis, 2006, 159, 47-54.	1.5	4
270	Highly Sensitive and Magnetically Switchable Biosensors Using Ordered Mesoporous Carbons. ACS Symposium Series, 2008, , 234-242.	0.5	4

#	Article	IF	CITATIONS
271	Skin Electronics: Oxide Nanomembrane Hybrids with Enhanced Mechano- and Thermo-Sensitivity for Semitransparent Epidermal Electronics (Adv. Healthcare Mater. 7/2015). Advanced Healthcare Materials, 2015, 4, 991-991.	3.9	4
272	Stretchable Electronics: Stretchable and Transparent Biointerface Using Cell‣heet–Graphene Hybrid for Electrophysiology and Therapy of Skeletal Muscle (Adv. Funct. Mater. 19/2016). Advanced Functional Materials, 2016, 26, 3182-3182.	7.8	4
273	Epidermal Electronics: Cephalopodâ€Inspired Miniaturized Suction Cups for Smart Medical Skin (Adv.) Tj ETQq1 I	0.78431	4 rgBT /Ove
274	Metal Oxide Nanoparticles: Largeâ€Scale Synthesis and Medical Applications of Uniformâ€Sized Metal Oxide Nanoparticles (Adv. Mater. 42/2018). Advanced Materials, 2018, 30, 1870319.	11.1	4
275	In Situ Liquid Phase TEM of Nanoparticle Formation and Diffusion in a Phase-Separated Medium. ACS Applied Materials & Interfaces, 2022, 14, 22810-22817.	4.0	4
276	The path of chemistry in Korea. Nature Materials, 2007, 6, 541-543.	13.3	3
277	In Vivo Sol–Gel Reaction of Tantalum Alkoxide for Endovascular Embolization. Advanced Healthcare Materials, 2022, 11, e2101908.	3.9	3
278	Facet-Defined Strain-Free Spinel Oxide for Oxygen Reduction. Nano Letters, 2022, 22, 3636-3644.	4.5	3
279	Magnetic Nanomaterials for Therapy. , 0, , 393-438.		2
280	Blood Sugar Monitoring: Multifunctional Wearable System that Integrates Sweatâ€Based Sensing and Vitalâ€Sign Monitoring to Estimate Preâ€{Postâ€Exercise Glucose Levels (Adv. Funct. Mater. 47/2018). Advanced Functional Materials, 2018, 28, 1870336.	7.8	2
281	Synthesis of Novel Mesoporous Carbons and Their Applications to Electrochemical Double-Layer Capacitors. Materials Research Society Symposia Proceedings, 1999, 593, 193.	0.1	1
282	Flexible Displays: Ultrathin Quantum Dot Display Integrated with Wearable Electronics (Adv. Mater.) Tj ETQq0 0 C) rg₿Ţ /Ov	erlock 10 Tf
283	Neuroprosthetics: Durable and Fatigueâ€Resistant Soft Peripheral Neuroprosthetics for In Vivo Bidirectional Signaling (Adv. Mater. 20/2021). Advanced Materials, 2021, 33, 2170157.	11.1	1
284	Recent Development of Flexible and Stretchable Supercapacitors Using Transition Metal Compounds as Electrode Materials (Small 36/2021). Small, 2021, 17, 2170189.	5.2	1
285	Controlling Multiple Active Sites on Pdâ^'CeO 2 for Sequential Câ^'C Cross oupling and Alcohol Oxidation in One Reaction System. ChemCatChem, 0, , .	1.8	1
286	Novel Silica-Sol Mediated Synthesis of Nanoporous Carbons. Materials Research Society Symposia Proceedings, 1999, 593, 93.	0.1	0
287	Nanostructured Carbon Capsules with Hollow Core/Mesoporous Shell Structure. Materials Research Society Symposia Proceedings, 2002, 728, 8461.	0.1	0
288	Designed synthesis and assembly of uniform-sized iron oxide nanoparticles for multifunctional medical applications. , 2011, , .		0

#	Article	IF	CITATIONS
289	Cover Picture: Multifunctional Capsule-in-Capsules for Immunoprotection and Trimodal Imaging (Angew. Chem. Int. Ed. 10/2011). Angewandte Chemie - International Edition, 2011, 50, 2189-2189.	7.2	0
290	Inorganic Nanomaterials for Medicine and Energy. , 0, , .		0
291	Inorganic Nanomaterials for Medicine and Energy. , 0, , .		0
292	Structural Insights into Multiâ€Metal Spinel Oxide Nanoparticles for Boosting Oxygen Reduction Electrocatalysis (Adv. Mater. 8/2022). Advanced Materials, 2022, 34, .	11.1	0