Christopher M Gourlay

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4592221/publications.pdf

Version: 2024-02-01

		87723	143772
130	3,818	38	57
papers	citations	h-index	g-index
120	120	120	1022
130	130	130	1922
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Growth twinning and morphology of Al45Cr7 and Al13Fe4. Journal of Alloys and Compounds, 2022, 893, 162318.	2.8	7
2	Al-Mn Intermetallics in High Pressure Die Cast AZ91 and Direct Chill Cast AZ80. Metals, 2022, 12, 266.	1.0	1
3	Al–Mn–Fe intermetallic formation in AZ91 magnesium alloys: Effects of impurity iron. Intermetallics, 2022, 142, 107465.	1.8	12
4	Eutectic intermetallic formation during solidification of a Mg-Sn-Al-Zn-Mn alloy. Materials Characterization, 2022, 186, 111807.	1.9	5
5	A multi-scale approach to microstructure-sensitive thermal fatigue in solder joints. International Journal of Plasticity, 2022, 155, 103308.	4.1	31
6	Time-Lapse Imaging of Ag3Sn Thermal Coarsening in Sn-3Ag-0.5Cu Solder Joints. Journal of Electronic Materials, 2021, 50, 786-795.	1.0	11
7	Microstructure and Damage Evolution During Thermal Cycling of Sn-Ag-Cu Solders Containing Antimony. Journal of Electronic Materials, 2021, 50, 825-841.	1.0	10
8	Al2MgC2 and AlFe3C formation in AZ91 Mg alloy melted in Fe-C crucibles. Journal of Alloys and Compounds, 2021, 854, 156415.	2.8	7
9	Intermetallic size and morphology effects on creep rate of Sn-3Ag-0.5Cu solder. International Journal of Plasticity, 2021, 137, 102904.	4.1	18
10	On the 3-D Shape of Interlaced Regions in Sn-3Ag-0.5Cu Solder Balls. Journal of Electronic Materials, 2021, 50, 808-817.	1.0	6
11	The Role of Lengthscale in the Creep of Sn-3Ag-0.5Cu Solder Microstructures. Journal of Electronic Materials, 2021, 50, 926-938.	1.0	10
12	Triaxial Compression on Semi-solid Alloys. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2021, 52, 2010-2023.	1.1	5
13	Rapid fabrication of tin-copper anodes for lithium-ion battery applications. Journal of Alloys and Compounds, 2021, 867, 159031.	2.8	9
14	All1Mn4 formation on Al8Mn5 during the solidification and heat treatment of AZ-series magnesium alloys. Materialia, 2021, 19, 101192.	1.3	17
15	In-situ electron backscatter diffraction of thermal cycling in a single grain Cu/Sn-3Ag-0.5Cu/Cu solder joint. Scripta Materialia, 2020, 175, 55-60.	2.6	20
16	Solidification orientation relationships between Al3Ti and TiB2. Acta Materialia, 2020, 186, 149-161.	3.8	21
17	In-situ study of creep in Sn-3Ag-0.5Cu solder. Acta Materialia, 2020, 196, 31-43.	3.8	13
18	Rheological transitions in semi-solid alloys: In-situ imaging and LBM-DEM simulations. Acta Materialia, 2020, 191, 24-42.	3.8	17

#	Article	IF	Citations
19	Al8Mn5 in High-Pressure Die Cast AZ91: Twinning, Morphology and Size Distributions. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2020, 51, 2523-2535.	1.1	8
20	The role of side-branching in microstructure development in laser powder-bed fusion. Nature Communications, 2020, 11, 749.	5.8	262
21	In-situ X-ray radiography of twinned crystal growth of primary Al13Fe4. Scripta Materialia, 2020, 184, 57-62.	2.6	21
22	Role of Bi, Sb and In in microstructure formation and properties of Sn-0.7Cu-0.05Ni-X BGA interconnections. , 2019, , .		2
23	Evaluating Creep Deformation in Controlled Microstructures of Sn-3Ag-0.5Cu Solder. Journal of Electronic Materials, 2019, 48, 107-121.	1.0	6
24	Al8Mn5 Particle Settling and Interactions with Oxide Films in Liquid AZ91 Magnesium Alloys. Jom, 2019, 71, 2235-2244.	0.9	20
25	Advances in Electronic Interconnection Materials. Jom, 2019, 71, 131-132.	0.9	2
26	Precipitation and coarsening of bismuth plates in Sn–Ag–Cu–Bi and Sn–Cu–Ni–Bi solder joints. Journal of Materials Science: Materials in Electronics, 2019, 30, 378-390.	1,1	19
27	Mechanisms of beta-Sn nucleation and microstructure evolution in Sn-Ag-Cu solders containing titanium. Journal of Alloys and Compounds, 2019, 777, 1357-1366.	2.8	18
28	Semi-solid deformation of Al-Cu alloys: A quantitative comparison between real-time imaging and coupled LBM-DEM simulations. Acta Materialia, 2019, 163, 208-225.	3.8	23
29	Nucleation and twinning in tin droplet solidification on single crystal intermetallic compounds. Acta Materialia, 2018, 150, 281-294.	3.8	36
30	Competition between stable and metastable eutectic growth in Sn-Ni alloys. Acta Materialia, 2018, 149, 119-131.	3.8	17
31	Nucleation and growth crystallography of Al8Mn5 on B2-Al(Mn,Fe) in AZ91 magnesium alloys. Acta Materialia, 2018, 153, 364-376.	3.8	57
32	Printability and microstructure of the CoCrFeMnNi high-entropy alloy fabricated by laser powder bed fusion. Materials Letters, 2018, 224, 22-25.	1.3	135
33	AlSi2Sc2 intermetallic formation in Al-7Si-0.3Mg-xSc alloys and their effects on as-cast properties. Journal of Alloys and Compounds, 2018, 731, 1159-1170.	2.8	37
34	The Influence of Primary Cu6Sn5 Size on the Shear Impact Properties of Sn-Cu/Cu BGA Joints. Journal of Electronic Materials, 2018, 47, 84-95.	1.0	8
35	Controlling BGA joint microstructures using seed crystals. , 2018, , .		O
36	Tailoring the Cu <inf>6</inf> Sn <inf>5</inf> layer texture with Ni additions in Sn-Ag-Cu based solder joints. , 2018, , .		0

#	Article	lF	Citations
37	Influence of Ni on the refinement and twinning of primary Cu6Sn5 in Sn-0.7Cu-0.05Ni. Intermetallics, 2018, 102, 34-45.	1.8	27
38	Optimization of Ni and Bi levels in Sn-0.7Cu-xNi-yBi solders for improved interconnection reliability. , 2018, , .		4
39	Synchrotron Radiography of Sn-0.7Cu-0.05Ni Solder Solidification. Solid State Phenomena, 2018, 273, 66-71.	0.3	2
40	In situ imaging of microstructure formation in electronic interconnections. Scientific Reports, 2017, 7, 40010.	1.6	43
41	Cu6Sn5 crystal growth mechanisms during solidification of electronic interconnections. Acta Materialia, 2017, 126, 540-551.	3.8	81
42	Nucleation, grain orientations, and microstructure of Sn-3Ag-0.5Cu soldered on cobalt substrates. Journal of Alloys and Compounds, 2017, 706, 596-608.	2.8	36
43	Reply to  Comments on "Evidence of the hydrogen release mechanism in bulk MgH2â€â€™. Scientific Reports, 2017, 7, 43720.	1.6	O
44	Grain refinement of electronic solders: The potential of combining solute with nucleant particles. Journal of Alloys and Compounds, 2017, 715, 471-485.	2.8	33
45	Recommended values for the Î ² Sn solidus line in Sn-Bi alloys. Thermochimica Acta, 2017, 654, 65-69.	1.2	22
46	Real time X-ray imaging of soldering processes at the SPring-8 synchrotron., 2017,,.		O
47	Influence of bismuth on the solidification of Sn-0.7Cu-0.05Ni-xBi/Cu joints. Journal of Alloys and Compounds, 2017, 701, 321-334.	2.8	42
48	Dilatancy in semi-solid steels at high solid fraction. Acta Materialia, 2017, 125, 187-195.	3.8	40
49	Anisotropic thermal expansion of Ni 3 Sn 4 , Ag 3 Sn, Cu 3 Sn, Cu 6 Sn 5 and \hat{l}^2 Sn. Intermetallics, 2017, 91, 50-64.	1.8	57
50	Harnessing heterogeneous nucleation to control tin orientations in electronic interconnections. Nature Communications, 2017, 8, 1916.	5.8	50
51	Nucleation of tin on the Cu6Sn5 layer in electronic interconnections. Acta Materialia, 2017, 123, 404-415.	3.8	56
52	Reaction-induced surface reconstruction of silver in contact with zirconium. Journal of Alloys and Compounds, 2017, 691, 624-633.	2.8	1
53	Growth of Al8Mn5 Intermetallic in AZ91. Minerals, Metals and Materials Series, 2017, , 85-92.	0.3	4
54	Real-Time Observation of AZ91 Solidification by Synchrotron Radiography. Minerals, Metals and Materials Series, 2017, , 597-603.	0.3	2

#	Article	IF	Citations
55	Suppression of Cu 6 Sn 5 in TiO 2 reinforced solder joints after multiple reflow cycles. Materials and Design, 2016, 108, 418-428.	3.3	57
56	Dissolution in service of the copper substrate of solder joints. , 2016, , .		3
57	Effects of cobalt on the nucleation and grain refinement of Sn-3Ag-0.5Cu solders. Journal of Alloys and Compounds, 2016, 682, 326-337.	2.8	66
58	Effect of Bi and In on Microstructure Formation in Sn-3Ag-3Bi-3In/Cu and /Ni Solder Joints. Key Engineering Materials, 2016, 700, 142-151.	0.4	2
59	Thermal etching of silver: Influence of rolling defects. Materials Characterization, 2016, 118, 112-121.	1.9	4
60	Influence of Bi additions on the distinct βSn grain structure of Sn-0.7Cu-0.05Ni-xBi (x = 0–4wt%). , 2016, , .		3
61	Effect of Ni on the Formation and Growth of Primary Cu6Sn5 Intermetallics in Sn-0.7Âwt.%Cu Solder Pastes on Cu Substrates During the Soldering Process. Journal of Electronic Materials, 2016, 45, 154-163.	1.0	51
62	Controlling Bulk Cu6Sn5 Nucleation in Sn0.7Cu/Cu Joints with Al Micro-alloying. Journal of Electronic Materials, 2016, 45, 69-78.	1.0	19
63	The Influence of Cu on Metastable NiSn4 in Sn-3.5Ag-xCu/ENIG Joints. Journal of Electronic Materials, 2016, 45, 12-20.	1.0	11
64	Etch pitting and subsurface pore growth during the thermal etching of silver. Philosophical Magazine Letters, 2015, 95, 547-554.	0.5	1
65	The influence of alloying elements on metastable NiSn4 in Sn-Ag solders on Ni-containing metallizations. , 2015, , .		1
66	Nucleation and Growth of Tin in Pb-Free Solder Joints. Jom, 2015, 67, 2383-2393.	0.9	52
67	Application of a macroscopic model to predict the band segregation induced by shear deformation of semisolid. IOP Conference Series: Materials Science and Engineering, 2015, 84, 012011.	0.3	O
68	Heterogeneous nucleation of bulk Cu <inf>6</inf> Sn <inf>5</inf> in Sn-Ag-Cu-Al and Sn-Cu-Al solders. , 2015, , .		0
69	Evidence of the hydrogen release mechanism in bulk MgH2. Scientific Reports, 2015, 5, 8450.	1.6	66
70	Metastable eutectic in Pb-free joints between Sn–3.5Ag and Ni-based substrates. Materials Letters, 2015, 148, 91-95.	1.3	16
71	Localization of shear strain and shear band formation induced by deformation in semi-solid Al-Cu alloys. IOP Conference Series: Materials Science and Engineering, 2015, 84, 012078.	0.3	1
72	NiSn <inf>4</inf> in solder joints between Sn-3.5Ag and Ni, ENIC or ENEPIC., 2015,,.		2

#	Article	IF	Citations
7 3	Heterogeneous nucleation of Cu6Sn5 in Sn–Cu–Al solders. Journal of Alloys and Compounds, 2015, 619, 345-355.	2.8	52
74	In Situ Observation of Deformation in Semi-solid Fe-C Alloys at High Shear Rate. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2014, 45, 5613-5623.	1.1	17
7 5	Heterogeneous nucleation of Î ² Sn on NiSn4, PdSn4 and PtSn4. Acta Materialia, 2014, 71, 56-68.	3.8	49
76	Solidification of Sn-0.7Cu-0.15Zn Solder: In Situ Observation. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2014, 45, 918-926.	1.1	23
77	Revealing the micromechanisms behind semi-solid metal deformation with time-resolved X-ray tomography. Nature Communications, 2014, 5, 4464.	5.8	94
78	Pore behaviour during semi-solid alloy compression: Insights into defect creation under pressure. Scripta Materialia, 2014, 89, 73-76.	2.6	16
79	Eutectic Morphology of Al-7Si-0.3Mg Alloys with Scandium Additions. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2014, 45, 4549-4560.	1.1	34
80	Synchrotron Radiography Studies of Shear-Induced Dilation in Semisolid Al Alloys and Steels. Jom, 2014, 66, 1415-1424.	0.9	13
81	In situ study of granular micromechanics in semi-solid carbon steels. Acta Materialia, 2013, 61, 4169-4179.	3.8	34
82	Role of Fe impurities in the nucleation of metastable NiSn4. Intermetallics, 2013, 37, 32-41.	1.8	13
83	XRD study of the kinetics of β ↔ α transformations in tin. Philosophical Magazine, 2013, 93, 3627-364	ł አ.7	27
84	Characterization of Shear Deformation Based on In-situ Observation of Deformation in Semi-solid Al–Cu Alloys and Water-particle Mixture. ISIJ International, 2013, 53, 1195-1201.	0.6	21
85	Characterization of Shear Deformation Based on In-situ Observation of Deformation in Semi-Solid Al-Cu Alloys and Water-Particle Mixture. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 2013, 99, 141-148.	0.1	2
86	Macroscopic modelling of semisolid deformation for considering segregation bands induced by shear deformation. IOP Conference Series: Materials Science and Engineering, 2012, 33, 012053.	0.3	5
87	NiSn4 formation during the solidification of Sn–Ni alloys. Intermetallics, 2012, 25, 48-59.	1.8	40
88	NiSn4 Formation in As-Soldered Ni-Sn and ENIG-Sn Couples. Journal of Electronic Materials, 2012, 41, 3331-3341.	1.0	19
89	Globule-Globule Interactions during Deformation in Semi-Solid Al-Cu Using Time-Resolved X-Ray Tomography. Solid State Phenomena, 2012, 192-193, 179-184.	0.3	0
90	Numerical study of dendrite coherency during equiaxed solidification by the Discrete Element Method. IOP Conference Series: Materials Science and Engineering, 2012, 33, 012071.	0.3	1

#	Article	IF	CITATIONS
91	Synchrotron radiography of direct-shear in semi-solid alloys. IOP Conference Series: Materials Science and Engineering, 2012, 27, 012086.	0.3	9
92	In situ, time-resolved tomography for validating models of deformation in semi-solid alloys. IOP Conference Series: Materials Science and Engineering, 2012, 33, 012037.	0.3	6
93	Exploring dendrite coherency with the discrete element method. Acta Materialia, 2012, 60, 1334-1345.	3.8	43
94	Direct observation of deformation in semi-solid carbon steel. Scripta Materialia, 2011, 64, 1129-1132.	2.6	81
95	Kinetics of the ηâ€"η′ transformation in Cu6Sn5. Scripta Materialia, 2011, 65, 922-925.	2.6	68
96	Formation of the surface layer in hypoeutectic Al-alloy high-pressure die castings. Materials Chemistry and Physics, 2011, 130, 251-258.	2.0	23
97	Granular deformation mechanisms in semi-solid alloys. Acta Materialia, 2011, 59, 4933-4943.	3.8	89
98	Dilatancy and rheology at 0–60% solid during equiaxed solidification. Acta Materialia, 2011, 59, 3091-3101.	3.8	26
99	In situ investigation of unidirectional solidification in Sn–0.7Cu and Sn–0.7Cu–0.06Ni. Acta Materialia, 2011, 59, 4043-4054.	3.8	56
100	Agglomeration and bending of equiaxed crystals during solidification of hypoeutectic Al and Mg alloys. Acta Materialia, 2010, 58, 261-271.	3.8	16
101	Feeding Mechanisms in High-Pressure Die Castings. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2010, 41, 1836-1846.	1.1	43
102	Intermetallic Formation and Fluidity in Sn-Rich Sn-Cu-Ni Alloys. Journal of Electronic Materials, 2010, 39, 56-69.	1.0	46
103	Development of shear bands during deformation of partially solid alloys. Scripta Materialia, 2010, 63, 1185-1188.	2.6	21
104	Synchrotron Micro-XRF Measurements of Trace Element Distributions in BGA Type Solders and Solder Joints. Transactions of the Japan Institute of Electronics Packaging, 2010, 3, 40-46.	0.3	14
105	The Influence of External Mechanical Stresses on Agglomeration and Bending of Solidifying Crystals. Materials Science Forum, 2010, 654-656, 1367-1372.	0.3	0
106	The influence of Ni additions on the relative stability of η and η′â€^Cu6Sn5. Applied Physics Letters, 2010, 96, .	1.5	54
107	In-situ Observation of Sn alloy solidification at SPring-8. Yosetsu Gakkai Shi/Journal of the Japan Welding Society, 2009, 78, 600-603.	0.0	2
108	The Influence of Intensification Pressure on the Gate Microstructure of AlSi3MgMn High Pressure Die Castings. Materials Science Forum, 2009, 618-619, 607-610.	0.3	3

#	Article	IF	CITATIONS
109	The thickness of defect bands in high-pressure die castings. Materials Characterization, 2009, 60, 1432-1441.	1.9	44
110	Cracking and phase stability in reaction layers between Sn-Cu-Ni solders and Cu substrates. Jom, 2009, 61, 45-51.	0.9	119
111	Microstructure Formation in AlSi4MgMn and AlMg5Si2Mn High-Pressure Die Castings. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2009, 40, 1645-1659.	1.1	72
112	Microstructure formation in high pressure die casting. Transactions of the Indian Institute of Metals, 2009, 62, 499-503.	0.7	10
113	Engineering the Mg–Mg2Ni eutectic transformation to produce improved hydrogen storage alloys. International Journal of Hydrogen Energy, 2009, 34, 7686-7691.	3.8	61
114	The Maximum Fluidity Length of Solidifying Sn-Cu-Ag-Ni Solder Alloys. Journal of Electronic Materials, 2008, 37, 51-60.	1.0	39
115	The Influence of O–0.1 wt.% Ni on the Microstructure and Fluidity Length of Sn-0.7Cu-xNi. Journal of Electronic Materials, 2008, 37, 32-39.	1.0	67
116	Shear mechanisms at 0–50% solid during equiaxed dendritic solidification of an AZ91 magnesium alloy. Acta Materialia, 2008, 56, 3403-3413.	3.8	59
117	Reynolds' Dilatancy and Shear Bands in Semi-Solid Alloys. Solid State Phenomena, 2008, 141-143, 337-342.	0.3	2
118	Effects of Phosphorus on Microstructure and Fluidity of Sn-0.7Cu-0.05Ni Lead-Free Solder. Materials Transactions, 2008, 49, 443-448.	0.4	24
119	Rheological Transitions at Low Solid Fraction in Solidifying Magnesium Alloy AZ91. Materials Science Forum, 2007, 561-565, 1067-1070.	0.3	3
120	Dilatant shear bands in solidifying metals. Nature, 2007, 445, 70-73.	13.7	192
121	Defect Band Characteristics in Mg-Al and Al-Si High-Pressure Die Castings. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2007, 38, 1833-1844.	1.1	103
122	A rheological assessment of the effect of trace level Ni additions on the solidification of Sn–0.7Cu. Scripta Materialia, 2006, 54, 1557-1562.	2.6	21
123	Effects of Si content on defect band formation in hypoeutectic Al–Si die castings. Materials Science & Samp; Engineering A: Structural Materials: Properties, Microstructure and Processing, 2005, 413-414, 92-97.	2.6	48
124	Shear deformation at 29% solid during solidification of magnesium alloy AZ91 and aluminium alloy A356. Materials Science & Description A: Structural Materials: Properties, Microstructure and Processing, 2005, 413-414, 180-185.	2.6	6
125	Migration of crystals during the filling of semi-solid castings. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2005, 36, 805-818.	1.1	79
126	Segregation band formation in Al-Si die castings. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2004, 35, 2881-2891.	1.1	52

#	ARTICLE	IF	CITATIONS
127	SEMIPERMEABLE MEMBRANE DEVICE-AVAILABILITY OF POLYCYCLIC AROMATIC HYDROCARBONS IN RIVER WATERS AND WASTEWATER TREATMENT PLANT EFFLUENTS. Polycyclic Aromatic Compounds, 2004, 24, 805-825.	1.4	10
128	<i>In Situ</i> Study of the Altering Globule Packing-Density during Semisolid Alloy Deformation. Solid State Phenomena, 0, 192-193, 185-190.	0.3	0
129	Solidification of Sn-3Ag-0.5Cu and Sn-0.7Cu-0.05Ni Solders. Materials Science Forum, 0, 857, 44-48.	0.3	1
130	Understanding the Rheological Transitions in Semi-Solid Alloys by a Combined <i>In Situ</i> Imaging and Granular Micromechanics Modeling Approach. Solid State Phenomena, 0, 327, 127-132.	0.3	0