
Betül Yesiltas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4591922/publications.pdf Version: 2024-02-01

<u> ΒετΑΊλι Υεςίιτλς</u>

#	Article	IF	CITATIONS
1	Antioxidant peptides derived from potato, seaweed, microbial and spinach proteins: Oxidative stability of 5% fish oil-in-water emulsions. Food Chemistry, 2022, 385, 132699.	8.2	29
2	Enrichment of mayonnaise with a high fat fish oil-in-water emulsion stabilized with modified DATEM C14 enhances oxidative stability. Food Chemistry, 2021, 341, 128141.	8.2	15
3	High fat (>50%) oil-in-water emulsions as omega-3 delivery systems. , 2021, , 255-273.		0
4	Food enrichment with omega-3 polyunsaturated fatty acids. , 2021, , 395-425.		2
5	Emulsifier peptides derived from seaweed, methanotrophic bacteria, and potato proteins identified by quantitative proteomics and bioinformatics. Food Chemistry, 2021, 362, 130217.	8.2	21
6	Physical and Oxidative Stability of Low-Fat Fish Oil-in-Water Emulsions Stabilized with Black Soldier Fly (Hermetia illucens) Larvae Protein Concentrate. Foods, 2021, 10, 2977.	4.3	3
7	AnOxPePred: using deep learning for the prediction of antioxidative properties of peptides. Scientific Reports, 2020, 10, 21471.	3.3	71
8	Small-Angle Neutron Scattering Study of High Fat Fish Oil-In-Water Emulsion Stabilized with Sodium Caseinate and Phosphatidylcholine. Langmuir, 2020, 36, 2300-2306.	3.5	9
9	Interfacial structure of 70% fish oil-in-water emulsions stabilized with combinations of sodium caseinate and phosphatidylcholine. Journal of Colloid and Interface Science, 2019, 554, 183-190.	9.4	19
10	Modified phosphatidylcholine with different alkyl chain length and covalently attached caffeic acid affects the physical and oxidative stability of omega-3 delivery 70% oil-in-water emulsions. Food Chemistry, 2019, 289, 490-499.	8.2	25
11	Physical and oxidative stability of high fat fish oil-in-water emulsions stabilized with sodium caseinate and phosphatidylcholine as emulsifiers. Food Chemistry, 2019, 276, 110-118.	8.2	36
12	Combination of sodium caseinate and succinylated alginate improved stability of high fat fish oil-in-water emulsions. Food Chemistry, 2018, 255, 290-299.	8.2	28
13	Effects of Modified DATEMs with Different Alkyl Chain Lengths on Improving Oxidative and Physical Stability of 70% Fish Oil-in-Water Emulsions. Journal of Agricultural and Food Chemistry, 2018, 66, 12512-12520.	5.2	22
14	Physical and oxidative stability of high fat fish oilâ€inâ€water emulsions stabilized with combinations of sodium caseinate and sodium alginate. European Journal of Lipid Science and Technology, 2017, 119, 1600484.	1.5	11
15	Comparison of Three Methods for Extraction of Volatile Lipid Oxidation Products from Food Matrices for GC–MS Analysis. JAOCS, Journal of the American Oil Chemists' Society, 2016, 93, 929-942.	1.9	19
16	Characterisation and antioxidant evaluation of Icelandic F. vesiculosus extracts in vitro and in fish-oil-enriched milk and mayonnaise. Journal of Functional Foods, 2015, 19, 828-841.	3.4	50
17	Investigating the <i>in-vitro</i> bioaccessibility of propolis and pollen using a simulated gastrointestinal digestion System. Journal of Apicultural Research, 2014, 53, 101-108.	1.5	31