
Sandra Breitung-Faes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4591509/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nanoparticle Production with Stirredâ€Media Mills: Opportunities and Limits. Chemical Engineering and Technology, 2010, 33, 1401-1411.	1.5	106
2	Impact of grinding aids on dry grinding performance, bulk properties and surface energy. Advanced Powder Technology, 2018, 29, 416-425.	4.1	61
3	Dry grinding in planetary ball mills: Evaluation of a stressing model. Advanced Powder Technology, 2018, 29, 191-201.	4.1	47
4	Nano particle production in high-power-density mills. Chemical Engineering Research and Design, 2008, 86, 390-394.	5.6	44
5	Impact of grinding aids and process parameters on dry stirred media milling. Powder Technology, 2018, 335, 114-123.	4.2	38
6	Production of transparent suspensions by real grinding of fused corundum. Powder Technology, 2011, 212, 383-389.	4.2	36
7	Impact of the powder flow behavior on continuous fine grinding in dry operated stirred media mills. Minerals Engineering, 2018, 128, 215-223.	4.3	25
8	Comparative study of the grinding aid effects for dry fine grinding of different materials. Minerals Engineering, 2019, 144, 106030.	4.3	25
9	Grinding kinetics of nano-sized particles for different electrostatic stabilizing acids in a stirred media mill. Powder Technology, 2013, 235, 1008-1016.	4.2	23
10	Effect of stressing conditions on mechanochemical Knoevenagel synthesis. Chemical Engineering Journal, 2020, 396, 124578.	12.7	13
11	Evaluation of the capturing of dry fine particles between grinding media by drop-weight tests. Powder Technology, 2020, 363, 326-336.	4.2	12
12	Impacts of process and design conditions of dry stirred milling on the shape of product size distribution. Minerals Engineering, 2021, 163, 106806.	4.3	6
13	Comparison of open and closed circuit mode using a dry horizontal stirred media mill with special regard to the powder flowability and residence time distribution. Minerals Engineering, 2021, 163, 106781.	4.3	4
14	Top-Down Formulation of Goethite Nanosuspensions for the Production of Transparent, Inorganic Glass Coatings. Coatings, 2022, 12, 330.	2.6	1
15	Opposing Effects of Additives in Dry Milling and Tableting of Organic Particles. Pharmaceutics, 2021, 13, 1434.	4.5	0