List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4591316/publications.pdf Version: 2024-02-01

ALINE C COSTA

#	Article	IF	CITATIONS
1	Production of bioethanol, methane and heat from sugarcane bagasse in a biorefinery concept. Bioresource Technology, 2011, 102, 7887-7895.	4.8	308
2	Ethanol production from enzymatic hydrolysis of sugarcane bagasse pretreated with lime and alkaline hydrogen peroxide. Biomass and Bioenergy, 2011, 35, 2600-2607.	2.9	130
3	Enhancement of methane production from sunflower oil cakes by dilute acid pretreatment. Applied Energy, 2013, 102, 1105-1113.	5.1	121
4	Lime Pretreatment of Sugarcane Bagasse for Bioethanol Production. Applied Biochemistry and Biotechnology, 2009, 153, 139-150.	1.4	120
5	Alkaline hydrogen peroxide pretreatment, enzymatic hydrolysis and fermentation of sugarcane bagasse to ethanol. Fuel, 2014, 136, 349-357.	3.4	98
6	Effects of the pretreatment method on high solids enzymatic hydrolysis and ethanol fermentation of the cellulosic fraction of sugarcane bagasse. Bioresource Technology, 2015, 191, 312-321.	4.8	82
7	Fermentation strategy for second generation ethanol production from sugarcane bagasse hydrolyzate by <i>Spathaspora passalidarum</i> and <i>Scheffersomyces stipitis</i> . Biotechnology and Bioengineering, 2017, 114, 2211-2221.	1.7	80
8	Evaluation of optimization techniques for parameter estimation: Application to ethanol fermentation considering the effect of temperature. Process Biochemistry, 2006, 41, 1682-1687.	1.8	72
9	Evaluation of the use of protic ionic liquids on biomass fractionation. Fuel, 2017, 206, 145-154.	3.4	72
10	Kinetics of Ethanol Fermentation with High Biomass Concentration Considering the Effect of Temperature. Applied Biochemistry and Biotechnology, 2001, 91-93, 353-366.	1.4	69
11	Screening of protic ionic liquids for sugarcane bagasse pretreatment. Fuel, 2019, 235, 1506-1514.	3.4	66
12	The influence of preparation conditions on the characteristics of chitosanâ€alginate dressings for skin lesions. Journal of Applied Polymer Science, 2008, 109, 2703-2710.	1.3	59
13	Factorial design and simulation for the optimization and determination of control structures for an extractive alcoholic fermentation. Process Biochemistry, 2001, 37, 125-137.	1.8	56
14	A Comparison between Lime and Alkaline Hydrogen Peroxide Pretreatments of Sugarcane Bagasse for Ethanol Production. Applied Biochemistry and Biotechnology, 2008, 148, 45-58.	1.4	51
15	A Comparison Between Lime and Alkaline Hydrogen Peroxide Pretreatments of Sugarcane Bagasse for Ethanol Production. Applied Biochemistry and Biotechnology, 2008, 144, 87-100.	1.4	50
16	Improvement on sugar cane bagasse hydrolysis using enzymatic mixture designed cocktail. Bioresource Technology, 2015, 187, 173-181.	4.8	49
17	Enzymatic hydrolysis of sugarcane bagasse for bioethanol production: determining optimal enzyme loading using neural networks. Journal of Chemical Technology and Biotechnology, 2010, 85, 983-992.	1.6	48
18	Bioethanol production by recycled Scheffersomyces stipitis in sequential batch fermentations with high cell density using xylose and glucose mixture. Bioresource Technology, 2016, 219, 319-329.	4.8	45

#	Article	IF	CITATIONS
19	Mathematical modeling and optimal control strategy development for an adipic acid crystallization process. Chemical Engineering and Processing: Process Intensification, 2005, 44, 737-753.	1.8	42
20	Structural characterization of sugarcane lignins extracted from different protic ionic liquid pretreatments. Renewable Energy, 2020, 161, 579-592.	4.3	42
21	Kinetics of ethanol production from sugarcane bagasse enzymatic hydrolysate concentrated with molasses under cell recycle. Bioresource Technology, 2013, 130, 351-359.	4.8	37
22	Investigation of hemicellulosic hydrolysate inhibitor resistance and fermentation strategies to overcome inhibition in non-saccharomyces species. Biomass and Bioenergy, 2020, 137, 105549.	2.9	37
23	Interplay of Acid–Base Ratio and Recycling on the Pretreatment Performance of the Protic Ionic Liquid Monoethanolammonium Acetate. ACS Sustainable Chemistry and Engineering, 2020, 8, 7952-7961.	3.2	36
24	Acid post-hydrolysis of xylooligosaccharides from hydrothermal pretreatment for pentose ethanol production. Fuel, 2016, 185, 73-84.	3.4	33
25	Optimization of a large scale industrial reactor by genetic algorithms. Chemical Engineering Science, 2008, 63, 330-341.	1.9	32
26	Batch and fed-batch enzymatic hydrolysis of pretreated sugarcane bagasse – Assays and modeling. Fuel, 2019, 253, 392-399.	3.4	32
27	Kinetics of Lime Pretreatment of Sugarcane Bagasse to Enhance Enzymatic Hydrolysis. Applied Biochemistry and Biotechnology, 2011, 163, 612-625.	1.4	31
28	Development of adaptive modeling techniques to describe the temperature-dependent kinetics of biotechnological processes. Biochemical Engineering Journal, 2007, 36, 157-166.	1.8	30
29	Lime Pretreatment and Fermentation of Enzymatically Hydrolyzed Sugarcane Bagasse. Applied Biochemistry and Biotechnology, 2013, 169, 1696-1712.	1.4	30
30	Adsorption characteristics of cellulase and βâ€glucosidase on Avicel, pretreated sugarcane bagasse, and lignin. Biotechnology and Applied Biochemistry, 2015, 62, 681-689.	1.4	30
31	Redox potential as a key parameter for monitoring and optimization of xylose fermentation with yeast Spathaspora passalidarum under limited-oxygen conditions. Bioprocess and Biosystems Engineering, 2020, 43, 1509-1519.	1.7	27
32	In-depth process parameter investigation into a protic ionic liquid pretreatment for 2G ethanol production. Renewable Energy, 2021, 172, 816-828.	4.3	21
33	A HYBRID NEURAL MODEL FOR THE OPTIMIZATION OF FED-BATCH FERMENTATIONS. Brazilian Journal of Chemical Engineering, 1999, 16, 53-63.	0.7	20
34	Study of kinetic parameters in a mechanistic model for enzymatic hydrolysis of sugarcane bagasse subjected to different pretreatments. Bioprocess and Biosystems Engineering, 2013, 36, 1579-1590.	1.7	19
35	Impact of the Melle-Boinot process on the enhancement of second-generation ethanol production by Spathaspora passalidarum. Renewable Energy, 2020, 160, 1206-1216.	4.3	19
36	Study of kinetic parameters in a mechanistic model for bioethanol production through a screening technique and optimization. Bioprocess and Biosystems Engineering, 2009, 32, 673-680.	1.7	18

#	Article	IF	CITATIONS
37	An adaptive optimal control scheme based on hybrid neural modelling. Computers and Chemical Engineering, 1998, 22, S859-S862.	2.0	17
38	Hybrid Neural Modeling Of Bioprocesses Using Functional Link Networks. Applied Biochemistry and Biotechnology, 2002, 98-100, 1009-1024.	1.4	16
39	Liquid-liquid equilibrium in systems used for the production of 5-hydroxymethylfurfural from biomass using alcohols as solvents. Journal of Chemical Thermodynamics, 2017, 111, 80-87.	1.0	16
40	Non-linear predictive control of an extractive alcoholic fermentation process. Process Biochemistry, 2002, 38, 743-750.	1.8	15
41	Mathematical modeling of enzyme production using Trichoderma harzianum P49P11 and sugarcane bagasse as carbon source. Bioresource Technology, 2015, 198, 101-107.	4.8	15
42	A differential evolution approach to estimate parameters in a temperature-dependent kinetic model for second generation ethanol production under high cell density with Spathaspora passalidarum. Biochemical Engineering Journal, 2020, 161, 107586.	1.8	15
43	The water consumption of sugarcane bagasse post-washing after protic ionic liquid pretreatment and its impact on 2G ethanol production. Industrial Crops and Products, 2021, 169, 113642.	2.5	13
44	Development of real-time state estimators for reaction–separation processes: A continuous flash fermentation as a study case. Chemical Engineering and Processing: Process Intensification, 2010, 49, 402-409.	1.8	12
45	Simulated Dynamics and Control of an Extractive Alcoholic Fermentation. Applied Biochemistry and Biotechnology, 2000, 84-86, 577-594.	1.4	11
46	Analysis of conversion and operation strategies for enzymatic hydrolysis of lignocellulosic biomass in a series of CSTRs with distributed feeding. Bioprocess and Biosystems Engineering, 2010, 33, 901-910.	1.7	11
47	Ethyl Alcohol Production Optimization by Coupling Genetic Algorithm and Multilayer Perceptron Neural Network. Applied Biochemistry and Biotechnology, 2006, 132, 969-984.	1.4	10
48	Evaluation of the alcoholic fermentation kinetics of enzymatic hydrolysates from sugarcane bagasse (<i>Saccharum officinarum</i> L.). Journal of Chemical Technology and Biotechnology, 2013, 88, 1049-1057.	1.6	10
49	Kinetic Study of the Acid Post-hydrolysis of Xylooligosaccharides from Hydrothermal Pretreatment. Bioenergy Research, 2017, 10, 1045-1056.	2.2	10
50	Effect of contamination with Lactobacillus fermentum I2 on ethanol production by Spathaspora passalidarum. Applied Microbiology and Biotechnology, 2019, 103, 5039-5050.	1.7	9
51	Exploiting the Non-conventional Yeast Spathaspora passalidarum as a Platform for Hemicellulosic Hydrolysate Conversion into Bioproducts: a Mini Review. Bioenergy Research, 2021, 14, 689-708.	2.2	9
52	Non-linear multivariable predictive control of an alcoholic fermentation process using functional link networks. Brazilian Archives of Biology and Technology, 2005, 48, 7-18.	0.5	9
53	Evaluation of Optimization Techniques for an Extractive Alcoholic Fermentation Process. Applied Biochemistry and Biotechnology, 2004, 114, 485-496.	1.4	8
54	A robotic platform to screen aqueous two-phase systems for overcoming inhibition in enzymatic reactions. Bioresource Technology, 2019, 280, 37-50.	4.8	8

#	Article	IF	CITATIONS
55	Online monitoring of the redox potential in microaerobic and anaerobic Scheffersomyces stipitis fermentations. Biotechnology Letters, 2019, 41, 753-761.	1.1	8
56	Estimation of temperature dependent parameters of a batch alcoholic fermentation process. Applied Biochemistry and Biotechnology, 2007, 137-140, 753-763.	1.4	7
57	CONTINUOUS AND SEMICONTINUOUS REACTION SYSTEMS FOR HIGH-SOLIDS ENZYMATIC HYDROLYSIS OF LIGNOCELLULOSICS. Brazilian Journal of Chemical Engineering, 2015, 32, 805-819.	0.7	7
58	Influence of chain length in protic ionic liquids on physicochemical and structural features of lignins from sugarcane bagasse. Industrial Crops and Products, 2021, 159, 113080.	2.5	7
59	A critical assessment of the Flory-Huggins (FH) theory to predict aqueous two-phase behaviour. Separation and Purification Technology, 2021, 255, 117636.	3.9	7
60	Adaptation Strategy to Increase the Tolerance of Scheffersomyces stipitis NRRL Y-7124 to Inhibitors of Sugarcane Bagasse Hemicellulosic Hydrolysate Through Comparative Studies of Proteomics and Fermentation. Bioenergy Research, 2022, 15, 479-492.	2.2	7
61	Structural features of protic ionic liquids and their impact on pretreatment performance for 2G ethanol production. Energy, 2021, 235, 121279.	4.5	7
62	Effect of Protic Ionic Liquids in Sugar Cane Bagasse Pretreatment for Lignin Valorization and Ethanol Production. ACS Sustainable Chemistry and Engineering, 2021, 9, 16965-16976.	3.2	7
63	A LabVIEW-based intelligent system for monitoring of bioprocesses. Computer Aided Chemical Engineering, 2009, , 309-314.	0.3	6
64	Enzymatic Hydrolysis of Sugarcane Bagasse in Aqueous Two-Phase Systems (ATPS): Exploration and Conceptual Process Design. Frontiers in Chemistry, 2020, 8, 587.	1.8	6
65	Optimizatin of fed-batch processes: Challenges and solutions. Brazilian Journal of Chemical Engineering, 1999, 16, 171-177.	0.7	6
66	Kinetic Modeling and Parameter Estimation in a Tower Bioreactor for Bioethanol Production. Applied Biochemistry and Biotechnology, 2008, 148, 163-173.	1.4	5
67	Potassium biphthalate buffer for pH control to optimize glycosyl hydrolase production in shake flasks using filamentous fungi. Brazilian Journal of Chemical Engineering, 2017, 34, 439-450.	0.7	4
68	Pretreatment of sugarcane bagasse by OXâ€B to enhancing the enzymatic hydrolysis for ethanol fermentation. Journal of Food Process Engineering, 2021, 44, e13579.	1.5	4
69	Continuous production of enzymes under carbon-limited conditions by Trichoderma harzianum P49P11. Fungal Biology, 2021, 125, 177-183.	1.1	4
70	A possible influence of extracellular polysaccharides on the analysis of intracellular metabolites from Trichoderma harzianum grown under carbon-limited conditions. Fungal Biology, 2021, 125, 368-377.	1.1	4
71	Dynamic Modeling Application To Evaluate the Performance of <i>Spathaspora passalidarum</i> in Second-Generation Ethanol Production: Parametric Dynamics and the Likelihood Confidence Region. Industrial & Engineering Chemistry Research, 2021, 60, 13822-13833.	1.8	4
72	Fermentation strategies to improve propionic acid production with <i>propionibacterium</i> ssp.: a review. Critical Reviews in Biotechnology, 2022, 42, 1157-1179.	5.1	4

#	Article	IF	CITATIONS
73	Kinetics of Ethanol Fermentation with High Biomass Concentration Considering the Effect of Temperature. , 2001, , 353-365.		3
74	Simulation of Aerated Lagoon Using Artificial Neural Networks and Multivariate Regression Techniques. Applied Biochemistry and Biotechnology, 2003, 106, 437-450.	1.4	3
75	Hybrid neural network model of an industrial ethanol fermentation process considering the effect of temperature. Applied Biochemistry and Biotechnology, 2007, 137-140, 817-833.	1.4	3
76	Bioethanol Production Optimization: A Thermodynamic Analysis. Applied Biochemistry and Biotechnology, 2008, 148, 141-149.	1.4	3
77	Mathematical modelling for the optimization of cellulase production using glycerol for cell growth and cellulose as the inducer substrate. Chemical Engineering Science: X, 2020, 8, 100085.	1.5	3
78	Analysis of the proteins secreted by Trichoderma harzianum P49P11 under carbon-limited conditions. Journal of Proteomics, 2020, 227, 103922.	1.2	3
79	Estimation of Temperature Dependent Parameters of a Batch Alcoholic Fermentation Process. , 2007, , 753-763.		2
80	Hybrid modeling for continuous production of bioethanol. Computer Aided Chemical Engineering, 2006, 21, 613-618.	0.3	1
81	Nonâ€Linear Predictive Control of a Threeâ€Phase Catalytic Reactor. Canadian Journal of Chemical Engineering, 2003, 81, 1109-1118.	0.9	1
82	Soft-Sensor for Real-Time Estimation of Ethanol Concentration in Continuous Flash Fermentation. Computer Aided Chemical Engineering, 2009, 27, 1653-1658.	0.3	1
83	A CAPE approach to gamma-Linolenic acid production via lipase-catalyzed enzymatic hydrolysis. Computer Aided Chemical Engineering, 2007, 24, 941-946.	0.3	Ο
84	Bioethanol production sustainability: Outlook for improvement using computer-aided techniques. Computer Aided Chemical Engineering, 2007, , 929-934.	0.3	0
85	Secretome analysis as a tool to elucidate bacterial contamination influence during second-generation ethanol production in a Melle-Boinot process. FEMS Yeast Research, 2021, 21, .	1.1	Ο
86	Kinetic Modeling and Parameter Estimation in a Tower Bioreactor for Bioethanol Production. , 2007, , 681-691.		0
87	Bioethanol Production Optimization: A Thermodynamic Analysis. , 2008, , 659-667.		Ο