
Michael M Wegner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4591151/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Coordination of Schwann cell myelination and node formation at the transcriptional level. Neural Regeneration Research, 2022, 17, 1269.	3.0	1
2	Transcription factor Zfp276 drives oligodendroglial differentiation and myelination by switching off the progenitor cell program. Nucleic Acids Research, 2022, , .	14.5	5
3	Role of the Pbrm1 subunit and the PBAF complex in Schwann cell development. Scientific Reports, 2022, 12, 2651.	3.3	3
4	Sox9 in the developing central nervous system: a jack of all trades?. Neural Regeneration Research, 2021, 16, 676.	3.0	7
5	Formation of the node of Ranvier by Schwann cells is under control of transcription factor Sox10. Glia, 2021, 69, 1464-1477.	4.9	10
6	scRNA sequencing uncovers a TCF4-dependent transcription factor network regulating commissure development in mouse. Development (Cambridge), 2021, 148, .	2.5	8
7	SoxD transcription factor deficiency in Schwann cells delays myelination in the developing peripheral nervous system. Scientific Reports, 2021, 11, 14044.	3.3	5
8	Using the lineage determinants Olig2 and Sox10 to explore transcriptional regulation of oligodendrocyte development. Developmental Neurobiology, 2021, 81, 892-901.	3.0	33
9	Sox9 overexpression exerts multiple stageâ€dependent effects on mouse spinal cord development. Clia, 2020, 68, 932-946.	4.9	7
10	The role of chromatin remodeling complexes in Schwann cell development. Glia, 2020, 68, 1596-1603.	4.9	10
11	Myrf guides target gene selection of transcription factor Sox10 during oligodendroglial development. Nucleic Acids Research, 2020, 48, 1254-1270.	14.5	31
12	The transcription factor Sox10 is an essential determinant of branching morphogenesis and involution in the mouse mammary gland. Scientific Reports, 2020, 10, 17807.	3.3	21
13	Egr2-guided histone H2B monoubiquitination is required for peripheral nervous system myelination. Nucleic Acids Research, 2020, 48, 8959-8976.	14.5	14
14	Evolution of regulatory signatures in primate cortical neurons at cell-type resolution. Proceedings of the United States of America, 2020, 117, 28422-28432.	7.1	18
15	A Human Periodontal Ligament Fibroblast Cell Line as a New Model to Study Periodontal Stress. International Journal of Molecular Sciences, 2020, 21, 7961.	4.1	10
16	CTCF-mediated chromatin looping in EGR2 regulation and SUZ12 recruitment critical for peripheral myelination and repair. Nature Communications, 2020, 11, 4133.	12.8	27
17	Common schizophrenia risk variants are enriched in open chromatin regions of human glutamatergic neurons. Nature Communications, 2020, 11, 5581.	12.8	53
18	MicroRNA miRâ€204 regulates proliferation and differentiation of oligodendroglia in culture. Glia, 2020, 68, 2015-2027.	4.9	16

#	Article	IF	CITATIONS
19	Specification of oligodendrocytes. , 2020, , 847-866.		2
20	Transcription factor Tcf4 is the preferred heterodimerization partner for Olig2 in oligodendrocytes and required for differentiation. Nucleic Acids Research, 2020, 48, 4839-4857.	14.5	31
21	Deciphering the regulatory landscape of fetal and adult γδTâ€cell development at singleâ€cell resolution. EMBO Journal, 2020, 39, e104159.	7.8	48
22	Ep400 deficiency in Schwann cells causes persistent expression of early developmental regulators and peripheral neuropathy. Nature Communications, 2019, 10, 2361.	12.8	20
23	Chromatin remodeler Ep400 ensures oligodendrocyte survival and is required for myelination in the vertebrate central nervous system. Nucleic Acids Research, 2019, 47, 6208-6224.	14.5	26
24	Transcriptional control of myelination and remyelination. Glia, 2019, 67, 2153-2165.	4.9	69
25	A gene regulatory architecture that controls regionâ€independent dynamics of oligodendrocyte differentiation. Glia, 2019, 67, 825-843.	4.9	36
26	Oligodendroglial αâ€synucleinopathyâ€driven neuroinflammation in multiple system atrophy. Brain Pathology, 2019, 29, 380-396.	4.1	50
27	Sox11 gene disruption causes congenital anomalies of the kidney and urinary tract (CAKUT). Kidney International, 2018, 93, 1142-1153.	5.2	19
28	Nfat/calcineurin signaling promotes oligodendrocyte differentiation and myelination by transcription factor network tuning. Nature Communications, 2018, 9, 899.	12.8	60
29	Injury-activated glial cells promote wound healing of the adult skin in mice. Nature Communications, 2018, 9, 236.	12.8	119
30	Analysis of the human SOX10 mutation Q377X in mice and its implications for genotype-phenotype correlation in SOX10-related human disease. Human Molecular Genetics, 2018, 27, 1078-1092.	2.9	5
31	Sox8 and Sox10 jointly maintain myelin gene expression in oligodendrocytes. Clia, 2018, 66, 279-294.	4.9	48
32	A unique role for DNA (hydroxy)methylation in epigenetic regulation of human inhibitory neurons. Science Advances, 2018, 4, eaau6190.	10.3	92
33	Characterization of Glomerular Sox9+ Cells in Anti-Glomerular Basement Membrane Nephritis in the Rat. American Journal of Pathology, 2018, 188, 2529-2541.	3.8	9
34	Transcription factor profiling identifies Sox9 as regulator of proliferation and differentiation in corneal epithelial stem/progenitor cells. Scientific Reports, 2018, 8, 10268.	3.3	39
35	BRG1 interacts with SOX10 to establish the melanocyte lineage and to promote differentiation. Nucleic Acids Research, 2017, 45, 6442-6458.	14.5	51
36	Transcription factor Sox10 regulates oligodendroglial Sox9 levels via microRNAs. Glia, 2017, 65, 1089-1102.	4.9	41

#	Article	IF	CITATIONS
37	Myelin regulatory factor drives remyelination in multiple sclerosis. Acta Neuropathologica, 2017, 134, 403-422.	7.7	87
38	SoxE factors: Transcriptional regulators of neural differentiation and nervous system development. Seminars in Cell and Developmental Biology, 2017, 63, 35-42.	5.0	91
39	Sp2 is the only glutamineâ€rich specificity protein with minor impact on development and differentiation in myelinating glia. Journal of Neurochemistry, 2017, 140, 245-256.	3.9	2
40	Sox13 functionally complements the related Sox5 and Sox6 as important developmental modulators in mouse spinal cord oligodendrocytes. Journal of Neurochemistry, 2016, 136, 316-328.	3.9	20
41	α-Synuclein-induced myelination deficit defines a novel interventional target for multiple system atrophy. Acta Neuropathologica, 2016, 132, 59-75.	7.7	58
42	Substantial DNA methylation differences between two major neuronal subtypes in human brain. Nucleic Acids Research, 2016, 44, 2593-2612.	14.5	97
43	Transcription factors Sox5 and Sox6 exert direct and indirect influences on oligodendroglial migration in spinal cord and forebrain. Glia, 2016, 64, 122-138.	4.9	50
44	The Dual-specificity phosphatase Dusp15 is regulated by Sox10 and Myrf in Myelinating Oligodendrocytes. Glia, 2016, 64, 2120-2132.	4.9	19
45	Zeb2 is essential for Schwann cell differentiation, myelination and nerve repair. Nature Neuroscience, 2016, 19, 1050-1059.	14.8	123
46	Schwann cells and their transcriptional network: Evolution of key regulators of peripheral myelination. Brain Research, 2016, 1641, 101-110.	2.2	59
47	SomethiNG 2 talk about—Transcriptional regulation in embryonic and adult oligodendrocyte precursors. Brain Research, 2016, 1638, 167-182.	2.2	47
48	Neural stem/progenitor cell properties of glial cells in the adult mouse auditory nerve. Scientific Reports, 2015, 5, 13383.	3.3	43
49	Oligodendroglial heterogeneity in time and space (NG2 glia in the CNS). E-Neuroforum, 2015, 6, 69-72.	0.1	2
50	Oligodendroglial heterogeneity in time and space (NG2 glia in the CNS). E-Neuroforum, 2015, 21, .	0.1	0
51	Radial glia phagocytose axonal debris from degenerating overextending axons in the developing olfactory bulb. Journal of Comparative Neurology, 2015, 523, Spc1-Spc1.	1.6	0
52	Brg1-Dependent Chromatin Remodelling Is Not Essentially Required during Oligodendroglial Differentiation. Journal of Neuroscience, 2015, 35, 21-35.	3.6	55
53	Copy number variation of two separate regulatory regions upstream of <i>SOX9</i> causes isolated 46,XY or 46,XX disorder of sex development. Journal of Medical Genetics, 2015, 52, 240-247.	3.2	88
54	Gain of Olig2 function in oligodendrocyte progenitors promotes remyelination. Brain, 2015, 138, 120-135.	7.6	119

#	Article	IF	CITATIONS
55	Transcription factors Sox10 and Sox2 functionally interact with positive transcription elongation factor b in Schwann cells. Journal of Neurochemistry, 2015, 132, 384-393.	3.9	21
56	Antagonistic Cross-Regulation between Sox9 and Sox10 Controls an Anti-tumorigenic Program in Melanoma. PLoS Genetics, 2015, 11, e1004877.	3.5	85
57	Elevated In Vivo Levels of a Single Transcription Factor Directly Convert Satellite Glia into Oligodendrocyte-like Cells. PLoS Genetics, 2015, 11, e1005008.	3.5	41
58	From CNS stem cells to neurons and glia: Sox for everyone. Cell and Tissue Research, 2015, 359, 111-124.	2.9	62
59	Stem cell factor Sox2 and its close relative Sox3 have differentiation functions in oligodendrocytes. Development (Cambridge), 2014, 141, 39-50.	2.5	92
60	α-Synuclein impairs oligodendrocyte progenitor maturation in multiple system atrophy. Neurobiology of Aging, 2014, 35, 2357-2368.	3.1	62
61	Genetic evidence that <i>Nkx2.2</i> and <i>Pdgfra</i> are major determinants of the timing of oligodendrocyte differentiation in the developing CNS. Development (Cambridge), 2014, 141, 548-555.	2.5	104
62	Intracellular alpha-synuclein affects early maturation of primary oligodendrocyte progenitor cells. Molecular and Cellular Neurosciences, 2014, 62, 68-78.	2.2	40
63	Mutual antagonism between Sox10 and NFIA regulates diversification of glial lineages and glioma subtypes. Nature Neuroscience, 2014, 17, 1322-1329.	14.8	124
64	Sox10 Cooperates with the Mediator Subunit 12 during Terminal Differentiation of Myelinating Glia. Journal of Neuroscience, 2013, 33, 6679-6690.	3.6	52
65	Olfactory ensheathing glia are required for embryonic olfactory axon targeting and the migration of gonadotropin-releasing hormone neurons. Biology Open, 2013, 2, 750-759.	1.2	66
66	MYRF Is a Membrane-Associated Transcription Factor That Autoproteolytically Cleaves to Directly Activate Myelin Genes. PLoS Biology, 2013, 11, e1001625.	5.6	198
67	The Transcription Factors Sox10 and Myrf Define an Essential Regulatory Network Module in Differentiating Oligodendrocytes. PLoS Genetics, 2013, 9, e1003907.	3.5	169
68	A Dual Role for SOX10 in the Maintenance of the Postnatal Melanocyte Lineage and the Differentiation of Melanocyte Stem Cell Progenitors. PLoS Genetics, 2013, 9, e1003644.	3.5	85
69	Sox appeal – Sox10 attracts epigenetic and transcriptional regulators in myelinating glia. Biological Chemistry, 2013, 394, 1583-1593.	2.5	32
70	Transcription factor Sox10 orchestrates activity of a neural crest-specific enhancer in the vicinity of its gene. Nucleic Acids Research, 2012, 40, 88-101.	14.5	108
71	SoxC Transcription Factors Are Required for Neuronal Differentiation in Adult Hippocampal Neurogenesis. Journal of Neuroscience, 2012, 32, 3067-3080.	3.6	140
72	Desert Hedgehog Links Transcription Factor Sox10 to Perineurial Development. Journal of Neuroscience, 2012, 32, 5472-5480.	3.6	20

#	Article	IF	CITATIONS
73	Sox10 promotes the formation and maintenance of giant congenital naevi and melanoma. Nature Cell Biology, 2012, 14, 882-890.	10.3	232
74	Chromatin-Remodeling Factor Brg1 Is Required for Schwann Cell Differentiation and Myelination. Developmental Cell, 2012, 23, 193-201.	7.0	107
75	Establishment of myelinating schwann cells and barrier integrity between central and peripheral nervous systems depend on <i>Sox10</i> . Glia, 2012, 60, 806-819.	4.9	36
76	Transforming Growth Factor β-Mediated Sox10 Suppression Controls Mesenchymal Progenitor Generation in Neural Crest Stem Cells. Stem Cells, 2011, 29, 689-699.	3.2	59
77	<i>Sox10</i> is required for Schwannâ€cell homeostasis and myelin maintenance in the adult peripheral nerve. Glia, 2011, 59, 1022-1032.	4.9	113
78	SOX after SOX: SOXession regulates neurogenesis: Figure 1 Genes and Development, 2011, 25, 2423-2428.	5.9	74
79	Olig2 regulates Sox10 expression in oligodendrocyte precursors through an evolutionary conserved distal enhancer. Nucleic Acids Research, 2011, 39, 1280-1293.	14.5	107
80	SOX9 controls epithelial branching by activating RET effector genes during kidney development. Human Molecular Genetics, 2011, 20, 1143-1153.	2.9	118
81	Activation of <i>Krox20</i> gene expression by Sox10 in myelinating Schwann cells. Journal of Neurochemistry, 2010, 112, 744-754.	3.9	77
82	The closely related transcription factors Sox4 and Sox11 function as survival factors during spinal cord development. Journal of Neurochemistry, 2010, 115, 131-141.	3.9	55
83	<i>Sox10</i> is required for Schwann cell identity and progression beyond the immature Schwann cell stage. Journal of Cell Biology, 2010, 189, 701-712.	5.2	198
84	SOX10 structure-function analysis in the chicken neural tube reveals important insights into its role in human neurocristopathies. Human Molecular Genetics, 2010, 19, 2409-2420.	2.9	27
85	Organogenesis relies on SoxC transcription factors for the survival of neural and mesenchymal progenitors. Nature Communications, 2010, 1, 9.	12.8	183
86	All purpose Sox: The many roles of Sox proteins in gene expression. International Journal of Biochemistry and Cell Biology, 2010, 42, 381-390.	2.8	191
87	Evolutionary conserved sequence elements with embryonic enhancer activity in the vicinity of the mammalian Sox8 gene. International Journal of Biochemistry and Cell Biology, 2010, 42, 465-471.	2.8	10
88	SoxE function in vertebrate nervous system development. International Journal of Biochemistry and Cell Biology, 2010, 42, 437-440.	2.8	117
89	Replacement of mouse Sox10 by the Drosophila ortholog Sox100B provides evidence for co-option of SoxE proteins into vertebrate-specific gene-regulatory networks through altered expression. Developmental Biology, 2010, 341, 267-281.	2.0	19
90	The Cell-Intrinsic Requirement of Sox6 for Cortical Interneuron Development. Neuron, 2009, 63, 466-481.	8.1	194

#	Article	IF	CITATIONS
91	A Matter of Identity: Transcriptional Control in Oligodendrocytes. Journal of Molecular Neuroscience, 2008, 35, 3-12.	2.3	108
92	SoxE Proteins Are Differentially Required in Mouse Adrenal Gland Development. Molecular Biology of the Cell, 2008, 19, 1575-1586.	2.1	48
93	Sox12 Deletion in the Mouse Reveals Nonreciprocal Redundancy with the Related Sox4 and Sox11 Transcription Factors. Molecular and Cellular Biology, 2008, 28, 4675-4687.	2.3	119
94	Sox9 and Sox10 influence survival and migration of oligodendrocyte precursors in the spinal cord by regulating PDGF receptor αexpression. Development (Cambridge), 2008, 135, 637-646.	2.5	190
95	The transcription factor Sox5 modulates Sox10 function during melanocyte development. Nucleic Acids Research, 2008, 36, 5427-5440.	14.5	82
96	Translation of SOX10 3' untranslated region causes a complex severe neurocristopathy by generation of a deleterious functional domain. Human Molecular Genetics, 2008, 17, 1705-1705.	2.9	0
97	Hypomorphic Sox10 alleles reveal novel protein functions and unravel developmental differences in glial lineages. Development (Cambridge), 2007, 134, 3271-3281.	2.5	85
98	Prolonged Sox4 Expression in Oligodendrocytes Interferes with Normal Myelination in the Central Nervous System. Molecular and Cellular Biology, 2007, 27, 5316-5326.	2.3	65
99	Multiple conserved regulatory elements with overlapping functions determine Sox10 expression in mouse embryogenesis. Nucleic Acids Research, 2007, 35, 6526-6538.	14.5	113
100	Translation of SOX10 3' untranslated region causes a complex severe neurocristopathy by generation of a deleterious functional domain. Human Molecular Genetics, 2007, 16, 3037-3046.	2.9	36
101	Induction of oligodendrocyte differentiation by Olig2 and Sox10: Evidence for reciprocal interactions and dosage-dependent mechanisms. Developmental Biology, 2007, 302, 683-693.	2.0	159
102	SoxD Proteins Influence Multiple Stages of Oligodendrocyte Development and Modulate SoxE Protein Function. Developmental Cell, 2006, 11, 697-709.	7.0	229
103	Expression of Connexin47 in Oligodendrocytes is Regulated by the Sox10 Transcription Factor. Journal of Molecular Biology, 2006, 361, 11-21.	4.2	55
104	Sox Transcription Factors in Neural Development. , 2006, , 181-203.		0
105	Competing waves of oligodendrocytes in the forebrain and postnatal elimination of an embryonic lineage. Nature Neuroscience, 2006, 9, 173-179.	14.8	978
106	The high-mobility-group domain of Sox proteins interacts with DNA-binding domains of many transcription factors. Nucleic Acids Research, 2006, 34, 1735-1744.	14.5	131
107	Replacement of the Sox10 transcription factor by Sox8 reveals incomplete functional equivalence. Development (Cambridge), 2006, 133, 2875-2886.	2.5	80

108 Melanocytes and the Transcription Factor Sox10., 2006, , 71-80.

0

#	Article	IF	CITATIONS
109	Secrets to a healthy Sox life: lessons for melanocytes. Pigment Cell & Melanoma Research, 2005, 18, 74-85.	3.6	94
110	The Class III POU Domain Protein Brn-1 Can Fully Replace the Related Oct-6 during Schwann Cell Development and Myelination. Molecular and Cellular Biology, 2005, 25, 1821-1829.	2.3	45
111	Identification of Sox8 as a modifier gene in a mouse model of Hirschsprung disease reveals underlying molecular defect. Developmental Biology, 2005, 277, 155-169.	2.0	158
112	Impact of transcription factor Sox8 on oligodendrocyte specification in the mouse embryonic spinal cord. Developmental Biology, 2005, 281, 309-317.	2.0	89
113	From stem cells to neurons and glia: a Soxist's view of neural development. Trends in Neurosciences, 2005, 28, 583-588.	8.6	379
114	Gene Targeting Reveals a Widespread Role for the High-Mobility-Group Transcription Factor Sox11 in Tissue Remodeling. Molecular and Cellular Biology, 2004, 24, 6635-6644.	2.3	245
115	Transcription factors Sox8 and Sox10 perform non-equivalent roles during oligodendrocyte development despite functional redundancy. Development (Cambridge), 2004, 131, 2349-2358.	2.5	188
116	Molecular mechanism for distinct neurological phenotypes conveyed by allelic truncating mutations. Nature Genetics, 2004, 36, 361-369.	21.4	383
117	Sox10-rtTA mouse line for tetracycline-inducible expression of transgenes in neural crest cells and oligodendrocytes. Genesis, 2004, 40, 171-175.	1.6	43
118	Functional analysis of <i>Sox8</i> and <i>Sox9</i> during sex determination in the mouse. Development (Cambridge), 2004, 131, 1891-1901.	2.5	490
119	Melanocyte-specific expression of dopachrome tautomerase is dependent on synergistic gene activation by the Sox10 and Mitf transcription factors. FEBS Letters, 2004, 556, 236-244.	2.8	122
120	Sox8 Is a Specific Marker for Muscle Satellite Cells and Inhibits Myogenesis. Journal of Biological Chemistry, 2003, 278, 29769-29775.	3.4	87
121	Loss of DNA-dependent dimerization of the transcription factor SOX9 as a cause for campomelic dysplasia. Human Molecular Genetics, 2003, 12, 1439-1447.	2.9	122
122	A Tissue-restricted cAMP Transcriptional Response. Journal of Biological Chemistry, 2003, 278, 45224-45230.	3.4	83
123	The Sox9 transcription factor determines glial fate choice in the developing spinal cord. Genes and Development, 2003, 17, 1677-1689.	5.9	541
124	Terminal differentiation of myelin-forming oligodendrocytes depends on the transcription factor Sox10. Genes and Development, 2002, 16, 165-170.	5.9	561
125	Cooperative binding of Sox10 to DNA: requirements and consequences. Nucleic Acids Research, 2002, 30, 5509-5516.	14.5	56
126	Sox10 Is an Active Nucleocytoplasmic Shuttle Protein, and Shuttling Is Crucial for Sox10-Mediated Transactivation. Molecular and Cellular Biology, 2002, 22, 5826-5834.	2.3	99

#	Article	IF	CITATIONS
127	Development and degeneration of dorsal root ganglia in the absence of the HMG-domain transcription factor Sox10. Mechanisms of Development, 2001, 109, 253-265.	1.7	93
128	Idiopathic Weight Reduction in Mice Deficient in the High-Mobility-Group Transcription Factor Sox8. Molecular and Cellular Biology, 2001, 21, 6951-6959.	2.3	148
129	Survival and glial fate acquisition of neural crest cells are regulated by an interplay between the transcription factor Sox10 and extrinsic combinatorial signaling. Development (Cambridge), 2001, 128, 3949-3961.	2.5	285
130	The glial transcription factor Sox10 binds to DNA both as monomer and dimer with different functional consequences. Nucleic Acids Research, 2000, 28, 3047-3055.	14.5	154
131	Protein Zero Gene Expression Is Regulated by the Glial Transcription Factor Sox10. Molecular and Cellular Biology, 2000, 20, 3198-3209.	2.3	210
132	From head to toes: the multiple facets of Sox proteins. Nucleic Acids Research, 1999, 27, 1409-1420.	14.5	769
133	Bone Morphogenetic Proteins Are Required In Vivo for the Generation of Sympathetic Neurons. Neuron, 1999, 24, 861-870.	8.1	270
134	SOX10 mutations in patients with Waardenburg-Hirschsprung disease. Nature Genetics, 1998, 18, 171-173.	21.4	733
135	Functional Analysis of Sox10 Mutations Found in Human Waardenburg-Hirschsprung Patients. Journal of Biological Chemistry, 1998, 273, 23033-23038.	3.4	126
136	Cooperative Function of POU Proteins and SOX Proteins in Glial Cells. Journal of Biological Chemistry, 1998, 273, 16050-16057.	3.4	202
137	Sox10, a Novel Transcriptional Modulator in Glial Cells. Journal of Neuroscience, 1998, 18, 237-250.	3.6	718
138	Redundancy of Class III POU Proteins in the Oligodendrocyte Lineage. Journal of Biological Chemistry, 1997, 272, 32286-32293.	3.4	54
139	Expression of Krox Proteins During Differentiation of the Oâ€2A Progenitor Cell Line CGâ€4. Journal of Neurochemistry, 1997, 68, 1911-1919.	3.9	35
140	Identification of the Nuclear Localization Signal of the POU Domain Protein Tst-1/Oct6. Journal of Biological Chemistry, 1996, 271, 17512-17518.	3.4	70