
Isabel Garrido

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4590927/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Reclamation of agro-wastewater polluted with pesticide residues using sunlight activated persulfate for agricultural reuse. Science of the Total Environment, 2019, 660, 923-930.	3.9	66
2	Determination of spirocyclic tetronic/tetramic acid derivatives and neonicotinoid insecticides in fruits and vegetables by liquid chromatography and mass spectrometry after dispersive liquid–liquid microextraction. Food Chemistry, 2016, 202, 389-395.	4.2	60
3	Photocatalytic oxidation of six pesticides listed as endocrine disruptor chemicals from wastewater using two different TiO2 samples at pilot plant scale under sunlight irradiation. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 353, 271-278.	2.0	52
4	Photodegradation of neonicotinoid insecticides in water by semiconductor oxides. Environmental Science and Pollution Research, 2015, 22, 15055-15066.	2.7	47
5	Solar reclamation of wastewater effluent polluted with bisphenols, phthalates and parabens by photocatalytic treatment with TiO2/Na2S2O8 at pilot plant scale. Chemosphere, 2018, 212, 95-104.	4.2	47
6	Photocatalytic oxidation of six endocrine disruptor chemicals in wastewater using ZnO at pilot plant scale under natural sunlight. Environmental Science and Pollution Research, 2018, 25, 34995-35007.	2.7	43
7	Solar photocatalytic reclamation of agro-waste water polluted with twelve pesticides for agricultural reuse. Chemosphere, 2019, 214, 839-845.	4.2	39
8	Photocatalytic mitigation of triazinone herbicide residues using titanium dioxide in slurry photoreactor. Catalysis Today, 2015, 252, 70-77.	2.2	38
9	Photocatalytic oxidation of pirimicarb in aqueous slurries containing binary and ternary oxides of zinc and titanium. Journal of Photochemistry and Photobiology A: Chemistry, 2015, 298, 24-32.	2.0	37
10	Dispersive liquid–liquid microextraction for the determination of new generation pesticides in soils by liquid chromatography and tandem mass spectrometry. Journal of Chromatography A, 2015, 1394, 1-8.	1.8	35
11	Implementation of a new modular facility to detoxify agro-wastewater polluted with neonicotinoid insecticides in farms by solar photocatalysis. Energy, 2019, 175, 722-729.	4.5	28
12	Solar-driven photocatalytic treatment as sustainable strategy to remove pesticide residues from leaching water. Environmental Science and Pollution Research, 2020, 27, 7222-7233.	2.7	27
13	Photooxidation of insecticide residues by ZnO and TiO2 coated magnetic nanoparticles under natural sunlight. Journal of Photochemistry and Photobiology A: Chemistry, 2019, 372, 245-253.	2.0	25
14	Reclamation of agro-wastewater polluted with thirteen pesticides by solar photocatalysis to reuse in irrigation of greenhouse lettuce grown. Journal of Environmental Management, 2020, 266, 110565.	3.8	24
15	Trial of solar heating methods (solarization and biosolarization) to reduce persistence of neonicotinoid and diamide insecticides in a semiarid Mediterranean soil. Science of the Total Environment, 2017, 590-591, 325-332.	3.9	23
16	Mobility of insecticide residues and main intermediates in a clay-loam soil, and impact of leachate components on their photocatalytic degradation. Chemosphere, 2021, 274, 129965.	4.2	23
17	Combination of solvent extractants for dispersive liquid-liquid microextraction of fungicides from water and fruit samples by liquid chromatography with tandem mass spectrometry. Food Chemistry, 2017, 233, 69-76.	4.2	21
18	Photometabolic pathways of chlorantraniliprole in aqueous slurries containing binary and ternary oxides of Zn and Ti. Chemical Engineering Journal, 2015, 264, 720-727.	6.6	20

ISABEL GARRIDO

#	Article	IF	CITATIONS
19	Removal of Pesticides with Endocrine Disruptor Activity in Wastewater Effluent by Solar Heterogeneous Photocatalysis Using ZnO/Na2S2O8. Water, Air, and Soil Pollution, 2019, 230, 1.	1.1	19
20	Solar reclamation of agro-wastewater polluted with eight pesticides by heterogeneous photocatalysis using a modular facility. A case study. Chemosphere, 2020, 249, 126156.	4.2	19
21	Combined ozonation and solarization for the removal of pesticides from soil: Effects on soil microbial communities. Science of the Total Environment, 2021, 758, 143950.	3.9	18
22	Use of different organic wastes as strategy to mitigate the leaching potential of phenylurea herbicides through the soil. Environmental Science and Pollution Research, 2015, 22, 4336-4349.	2.7	17
23	Determination of synthetic phosphodiesterase-5 inhibitors by LC-MS2 in waters and human urine submitted to dispersive liquid-liquid microextraction. Talanta, 2017, 174, 638-644.	2.9	17
24	Magnetic solidâ€phase extraction or dispersive liquid–liquid microextraction for pyrethroid determination in environmental samples. Journal of Separation Science, 2018, 41, 2565-2575.	1.3	16
25	Solar detoxification of water polluted with fungicide residues using ZnO-coated magnetic particles. Chemical Engineering Journal, 2017, 330, 71-81.	6.6	15
26	Decline of fluroxypyr and triclopyr residues from pure, drinking and leaching water by photo-assisted peroxonation. Chemical Engineering Research and Design, 2020, 137, 358-365.	2.7	13
27	Photocatalytic degradation of four insecticides and their main generated transformation products in soil and pepper crop irrigated with reclaimed agro-wastewater under natural sunlight. Journal of Hazardous Materials, 2021, 414, 125603.	6.5	13
28	Abatement of spinosad and indoxacarb residues in pure water by photocatalytic treatment using binary and ternary oxides of Zn and Ti. Environmental Science and Pollution Research, 2014, 21, 12143-12153.	2.7	12
29	Reliable analysis of chlorophenoxy herbicides in soil and water by magnetic solid phase extraction and liquid chromatography. Environmental Chemistry Letters, 2018, 16, 1077-1082.	8.3	12
30	Solarization-based pesticide degradation results in decreased activity and biomass of the soil microbial community. Geoderma, 2019, 354, 113893.	2.3	12
31	Photocatalytic Performance of Electrospun Silk Fibroin/ZnO Mats to Remove Pesticide Residues from Water under Natural Sunlight. Catalysts, 2020, 10, 110.	1.6	12
32	Evaluation of the Leaching Potential of Anthranilamide Insecticides Through the Soil. Bulletin of Environmental Contamination and Toxicology, 2017, 99, 465-469.	1.3	11
33	Electrospun silk fibroin/TiO ₂ mats. Preparation, characterization and efficiency for the photocatalytic solar treatment of pesticide polluted water. RSC Advances, 2020, 10, 1917-1924.	1.7	11
34	Photooxidation of three spirocyclic acid derivative insecticides in aqueous suspensions as catalyzed by titanium and zinc oxides. Journal of Photochemistry and Photobiology A: Chemistry, 2016, 328, 189-197.	2.0	10
35	Microwave Assisted Cloud Point Extraction for the Determination of Vitamin K Homologues in Vegetables by Liquid Chromatography with Tandem Mass Spectrometry. Journal of Agricultural and Food Chemistry, 2019, 67, 6658-6664.	2.4	10
36	Assessment of reclaimed agro-wastewater polluted with insecticide residues for irrigation of growing lettuce (Lactuca sativa L) using solar photocatalytic technology. Environmental Pollution, 2022, 292, 118367.	3.7	10

ISABEL GARRIDO

#	Article	IF	CITATIONS
37	Enhanced degradation of spiro-insecticides and their leacher enol derivatives in soil by solarization and biosolarization techniques. Environmental Science and Pollution Research, 2017, 24, 9278-9285.	2.7	9
38	Reclamation of Water Polluted with Flubendiamide Residues by Photocatalytic Treatment with Semiconductor Oxides. Photochemistry and Photobiology, 2015, 91, 1088-1094.	1.3	8
39	Use of different organic wastes in reducing the potential leaching of propanil, isoxaben, cadusafos and pencycuron through the soil. Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 2014, 49, 601-608.	0.7	7
40	Fipronil decomposition in aqueous semiconductor suspensions using UV light and solar energy. Journal of the Taiwan Institute of Chemical Engineers, 2014, 45, 981-988.	2.7	7
41	Appraisal of water matrix on the removal of fungicide residues by heterogeneous photocatalytic treatment using UV-LED lamp as light source. Environmental Science and Pollution Research, 2021, 28, 23849-23858.	2.7	6
42	Testing of leachability and persistence of sixteen pesticides in three agricultural soils of a semiarid Mediterranean region. Spanish Journal of Agricultural Research, 2015, 13, e1104.	0.3	5
43	Risk Assessment of 1,2,4-Triazole-Typed Fungicides for Groundwater Pollution Using Leaching Potential Indices. Water, Air, and Soil Pollution, 2021, 232, 1.	1.1	5
44	Liquid–liquid microextraction of glyphosate, glufosinate and aminomethylphosphonic acid for the analysis of agricultural samples by liquid chromatography. Analytical Methods, 2020, 12, 2039-2045.	1.3	4
45	Solar photocatalysis as strategy for on-site reclamation of agro-wastewater polluted with pesticide residues on farms using a modular facility. Environmental Science and Pollution Research, 2021, 28, 23647-23656.	2.7	3
46	Photocatalytic Oxidation of Chlorantraniliprole, Imidacloprid, Pirimicarb, Thiamethoxam and Their Main Photoreaction InterMediates as Impacted by Water Matrix Composition under UVA-LED Exposure. Catalysts, 2021, 11, 609.	1.6	2
47	Financial assessment of an in-farm remediation system for the reuse of agro-wastewater with pesticides. Agricultural Water Management, 2021, 256, 107087.	2.4	2
48	Solar reclamation of groundwater and agro-wastewater polluted with pesticide residues using binary semiconductors and persulfates for their reuse in crop irrigation. , 2022, , 267-293.		1