Ana Paula Soares Dias

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4590745/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Biodiesel Glycerin Valorization into Oxygenated Fuel Additives. Catalysis Letters, 2022, 152, 513-522.	2.6	4
2	Valorization of forest waste biomass by catalyzed pyrolysis. Energy, 2022, 243, 122766.	8.8	17
3	Catalyzed pyrolysis of scrap tires rubber. Journal of Environmental Chemical Engineering, 2022, 10, 107037.	6.7	19
4	The role of Alkali dopants on the Oil Methanolysis Behavior of Lime Catalyst: Activity & Stability. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2022, 44, 748-757.	2.3	1
5	Rendering of Beef Tallow for Biodiesel Production: Microwave versus Boiling Water and Acetone Fat Extraction. Processes, 2022, 10, 666.	2.8	1
6	Biodiesel production over sodium carbonate and bicarbonate catalysts. Fuel, 2022, 323, 124383.	6.4	2
7	Pyrolysis of burnt maritime pine biomass from forest fires. Biomass and Bioenergy, 2022, 163, 106535.	5.7	4
8	Sintering resistant CO2 sorbents prepared by eggshell derived xerogels. Chemical Engineering Journal, 2022, 449, 137824.	12.7	5
9	On the storage stability of CaO biodiesel catalyst. Hydration and carbonation poisoning. Journal of Environmental Chemical Engineering, 2021, 9, 104917.	6.7	11
10	Co-processing lard/soybean oil over Ca-based catalysts to greener biodiesel. Environmental Technology and Innovation, 2021, 21, 101220.	6.1	7
11	Acetylation of biodiesel glycerin using glycerin and glucose derived catalysts. Journal of Cleaner Production, 2021, 297, 126686.	9.3	20
12	Catalyzed pyrolysis of coffee and tea wastes. Energy, 2021, 235, 121252.	8.8	23
13	Almond shells: Catalytic fixed-bed pyrolysis and volatilization kinetics. Renewable Energy, 2021, 180, 1380-1390.	8.9	10
14	System for application of controlled forces on dental implants in rat maxillae: Influence of the number of load cycles on bone healing. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2020, 108, 965-975.	3.4	4
15	Dry washing biodiesel purification using fumed silica sorbent. Chemical Engineering Journal, 2020, 386, 123930.	12.7	61
16	Solvent Assisted Biodiesel Production by Co-processing Beef Tallow and Soybean Oil Over Calcium Catalysts. Waste and Biomass Valorization, 2020, 11, 6249-6259.	3.4	8
17	Influence of Nanotopography on Early Bone Healing during Controlled Implant Loading. Nanomaterials, 2020, 10, 2191.	4.1	7
18	Biodiesel by Co-processing animal fat/vegetable oil mixtures over basic heterogeneous Ca catalyst. Cleaner Engineering and Technology, 2020, 1, 100012.	4.0	8

ANA PAULA SOARES DIAS

#	Article	IF	CITATIONS
19	Soybean oil ethanolysis over Ca based catalyst. Statistical optimization of reaction conditions. Reaction Kinetics, Mechanisms and Catalysis, 2020, 130, 433-445.	1.7	4
20	Pyrolysis of microalgae biomass over carbonate catalysts. Journal of Chemical Technology and Biotechnology, 2020, 95, 3270-3279.	3.2	15
21	Pyrolysis kinetics of short rotation coppice poplar biomass. Energy, 2020, 207, 118191.	8.8	46
22	Pyrolysis of Scenedesmus obliquus Biomass Following the Treatment of Different Wastewaters. Bioenergy Research, 2020, 13, 896-906.	3.9	16
23	Catalyzed pyrolysis of SRC poplar biomass. Alkaline carbonates and zeolites catalysts. Energy, 2019, 183, 1114-1122.	8.8	16
24	Calcium diglyceroxide as a catalyst for biodiesel production. Journal of Environmental Chemical Engineering, 2019, 7, 103099.	6.7	46
25	Fast determination of lignocellulosic composition of poplar biomass by thermogravimetry. Biomass and Bioenergy, 2019, 122, 375-380.	5.7	59
26	Biodiesel Production Processes and Sustainable Raw Materials. Energies, 2019, 12, 4408.	3.1	183
27	Moisture content as a design and operational parameter for fast pyrolysis. Journal of Analytical and Applied Pyrolysis, 2019, 139, 73-86.	5.5	24
28	On the mechanical and shrinkage behavior of cement mortars reinforced with carbon nanotubes. Construction and Building Materials, 2018, 168, 459-470.	7.2	109
29	Effects of mechanical activation on lithium extraction from a lepidolite ore concentrate. Minerals Engineering, 2017, 102, 1-14.	4.3	55
30	Scenedesmus obliquus mediated brewery wastewater remediation and CO 2 biofixation for green energy purposes. Journal of Cleaner Production, 2017, 165, 1316-1327.	9.3	85
31	Calcium Rich Food Wastes Based Catalysts for Biodiesel Production. Waste and Biomass Valorization, 2017, 8, 1699-1707.	3.4	42
32	Alkali-activated cement using slags and fly ash. , 2017, , 161-166.		2
33	Biodiesel production over lime. Catalytic contributions of bulk phases and surface Ca species formed during reaction. Renewable Energy, 2016, 99, 622-630.	8.9	37
34	Effect of low frequency ultrasound on microalgae solvent extraction: Analysis of products, energy consumption and emissions. Algal Research, 2016, 14, 9-16.	4.6	48
35	A comparison between microalgae virtual biorefinery arrangements for bio-oil production based on lab-scale results. Journal of Cleaner Production, 2016, 130, 58-67.	9.3	62
36	Evaluation of thermochemical properties of raw and extracted microalgae. Energy, 2015, 92, 365-372.	8.8	37

#	Article	IF	CITATIONS
37	The influence of poisoning on the deactivation of DeNOx catalysts. Comptes Rendus Chimie, 2015, 18, 1036-1048.	0.5	9
38	The role of the suprastoichiometric molybdenum during methanol to formaldehyde oxidation over Mo–Fe mixed oxides. Journal of Molecular Catalysis A, 2015, 397, 93-98.	4.8	23
39	Development of green composites reinforced with ramie fabrics: Effect of aging on mechanical properties of coated and uncoated specimens. Fibers and Polymers, 2014, 15, 2618-2624.	2.1	16
40	Biodiesel production over lithium modified lime catalysts: Activity and deactivation. Applied Catalysis A: General, 2014, 470, 451-457.	4.3	63
41	Biodiesel production from waste frying oils over lime catalysts. Reaction Kinetics, Mechanisms and Catalysis, 2013, 109, 405-415.	1.7	30
42	Effect of the oil acidity on the methanolysis performances of lime catalyst biodiesel from waste frying oils (WFO). Fuel Processing Technology, 2013, 116, 94-100.	7.2	66
43	Sorbents for CO2 capture from biogenesis calcium wastes. Chemical Engineering Journal, 2013, 226, 146-153.	12.7	56
44	Vanadium phosphate catalysts for biodiesel production from acid industrial by-products. Journal of Biotechnology, 2013, 164, 433-440.	3.8	18
45	Chloride-induced corrosion behavior of reinforcing steel in spent fluid cracking catalyst modified mortars. Cement and Concrete Research, 2013, 47, 1-7.	11.0	51
46	Status of biodiesel production using heterogeneous alkaline catalysts. International Journal of Environmental Studies, 2012, 69, 635-653.	1.6	12
47	Biodiesel production over thermal activated cerium modified Mg-Al hydrotalcites. Energy, 2012, 41, 344-353.	8.8	67
48	Investigation of a stable synthetic sol–gel CaO sorbent for CO2 capture. Fuel, 2012, 94, 624-628.	6.4	94
49	Biodiesel production by soybean oil methanolysis over SrO/MgO catalysts. Fuel Processing Technology, 2012, 102, 146-155.	7.2	44
50	Oxidation of tert-butanethiol with air using Mo-containing hydrotalcite-like compounds and their derived mixed oxides as catalysts. Reaction Kinetics, Mechanisms and Catalysis, 2012, 105, 145-162.	1.7	9
51	SCREENING HETEROGENEOUS CATALYSTS FOR TRANSESTERIFICATION OF TRIGLYCERIDES TO BIODIESEL. International Journal of Energy for A Clean Environment, 2011, 12, 45-54.	1.1	3
52	Cascade of Peritectic Reactions in the B-Fe-U System. Journal of Phase Equilibria and Diffusion, 2010, 31, 104-112.	1.4	4
53	Oxidative dehydrogenation of butane over substoichiometric magnesium vanadate catalysts prepared by citrate route. Journal of Non-Crystalline Solids, 2010, 356, 1488-1497.	3.1	15
54	Advances on the development of novel heterogeneous catalysts for transesterification of triglycerides in biodiesel. Fuel, 2010, 89, 3602-3606.	6.4	74

#	Article	IF	CITATIONS
55	New Mo-Fe-O silica supported catalysts for methanol to formaldehyde oxidation. Applied Catalysis A: General, 2008, 345, 185-194.	4.3	20
56	Oxidative dehydrogenation of -butane over nanostructured silica-supported NiMoO catalysts with low content of active phase. Applied Catalysis A: General, 2006, 298, 40-49.	4.3	23
57	Atmospheric methanol measurement using selective catalytic methanol to formaldehyde conversion. Atmospheric Chemistry and Physics, 2005, 5, 2787-2796.	4.9	14
58	Methanol Selective Oxidation to Formaldehyde over Ironâ€Molybdate Catalysts. Catalysis Reviews - Science and Engineering, 2005, 47, 125-174.	12.9	196
59	Selection of Clonostachys rosea isolates from Brazilian ecosystems effective in controlling Botrytis cinerea. Biological Control, 2005, 34, 132-143.	3.0	40
60	1-Octene metathesis on silica supported Zr-doped NiMoO4 catalysts. Catalysis Communications, 2005, 6, 321-327.	3.3	11
61	Mechanism of deactivation of iron-molybdate catalysts prepared by coprecipitation and sol–gel techniques in methanol to formaldehyde oxidation. Chemical Engineering Science, 2003, 58, 1315-1322.	3.8	78
62	Synergy effects between β and γ phases of bismuth molybdates in the selective catalytic oxidation of 1-butene. Applied Catalysis A: General, 2003, 253, 191-200.	4.3	63
63	Iron-molybdate deactivation during methanol to formaldehyde oxidation: effect of water. Reaction Kinetics and Catalysis Letters, 2002, 75, 13-20.	0.6	18
64	Iron molybdates for selective oxidation of methanol: Mo excess effects on the deactivation behaviour. Catalysis Communications, 2001, 2, 159-164.	3.3	30
65	Iron molybdate catalysts for methanol to formaldehyde oxidation: effects of Mo excess on catalytic behaviour. Applied Catalysis A: General, 2001, 206, 221-229.	4.3	102
66	Kinetics of the Main and Side Reactions of the Methanol Oxidation Over Iron Molybdates. Studies in Surface Science and Catalysis, 2001, 133, 489-494.	1.5	5
67	A comparison of iron molybdate catalysts for methanol oxidation prepared by copreciptation and new sol-gel method. Studies in Surface Science and Catalysis, 1997, 110, 807-816.	1.5	10