
Célia Pais

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/459063/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	International Society of Human and Animal Mycology (ISHAM)-ITS reference DNA barcoding database—the quality controlled standard tool for routine identification of human and animal pathogenic fungi. Medical Mycology, 2015, 53, 313-337.	0.3	252
2	Polyphasic taxonomy of the basidiomycetous yeast genus Rhodosporidium: Rhodosporidium kratochvilovae and related anamorphic species International Journal of Systematic and Evolutionary Microbiology, 2001, 51, 687-697.	0.8	139
3	New Microsatellite Multiplex PCR for Candida albicans Strain Typing Reveals Microevolutionary Changes. Journal of Clinical Microbiology, 2005, 43, 3869-3876.	1.8	137
4	Candida bracarensis sp. nov., a novel anamorphic yeast species phenotypically similar to Candida glabrata. International Journal of Systematic and Evolutionary Microbiology, 2006, 56, 313-317.	0.8	123
5	Highly Polymorphic Microsatellite for Identification of Candida albicans Strains. Journal of Clinical Microbiology, 2003, 41, 552-557.	1.8	97
6	New Polymorphic Microsatellite Markers Able To Distinguish among <i>Candida parapsilosis</i> Sensu Stricto Isolates. Journal of Clinical Microbiology, 2010, 48, 1677-1682.	1.8	76
7	Microbiological and physicochemical characterization of olive mill wastewaters from a continuous olive mill in Northeastern Portugal. Bioresource Technology, 2008, 99, 7215-7223.	4.8	69
8	Limited Role of Secreted Aspartyl Proteinases Sap1 to Sap6 in <i>Candida albicans</i> Virulence and Host Immune Response in Murine Hematogenously Disseminated Candidiasis. Infection and Immunity, 2010, 78, 4839-4849.	1.0	69
9	Participation of Candida albicans Transcription Factor RLM1 in Cell Wall Biogenesis and Virulence. PLoS ONE, 2014, 9, e86270.	1.1	64
10	Development and optimization of a new MALDI-TOF protocol for identification of the Sporothrix species complex. Research in Microbiology, 2015, 166, 102-110.	1.0	61
11	Leavening ability and freeze tolerance of yeasts isolated from traditional corn and rye bread doughs. Applied and Environmental Microbiology, 1996, 62, 4401-4404.	1.4	61
12	Microbiological Characterization of Picante da Beira Baixa Cheese. Journal of Food Protection, 1996, 59, 155-160.	0.8	58
13	Matrix-assisted laser desorption/ionization time-of-flight intact cell mass spectrometry to detect emerging pathogenic Candida species. Diagnostic Microbiology and Infectious Disease, 2011, 71, 304-308.	0.8	53
14	Yeast Biodiversity in Vineyard Environments Is Increased by Human Intervention. PLoS ONE, 2016, 11, e0160579.	1.1	50
15	Association between Grape Yeast Communities and the Vineyard Ecosystems. PLoS ONE, 2017, 12, e0169883.	1.1	48
16	Rapid Identification of Sporothrix Species by T3B Fingerprinting. Journal of Clinical Microbiology, 2012, 50, 2159-2162.	1.8	47
17	Microsatellite multilocus genotyping clarifies the relationship of Candida parapsilosis strains involved in a neonatal intensive care unit outbreak. Diagnostic Microbiology and Infectious Disease, 2011, 71, 159-162.	0.8	40
18	Characterization of the yeast population from traditional corn and rye bread doughs. Letters in Applied Microbiology, 1996, 23, 154-158.	1.0	38

CéLIA PAIS

#	Article	IF	CITATIONS
19	Application of MALDI-TOF MS for requalification of a Candida clinical isolates culture collection. Brazilian Journal of Microbiology, 2014, 45, 515-522.	0.8	35
20	Relevance of Macrophage Extracellular Traps in C. albicans Killing. Frontiers in Immunology, 2019, 10, 2767.	2.2	34
21	Isolates from hospital environments are the most virulent of the Candida parapsilosiscomplex. BMC Microbiology, 2011, 11, 180.	1.3	33
22	Intrastrain genomic and phenotypic variability of the commercial <i>Saccharomyces cerevisiae</i> strain Zymaflore VL1 reveals microevolutionary adaptation to vineyard environments. FEMS Yeast Research, 2015, 15, fov063.	1.1	32
23	Study of Molecular Epidemiology of Candidiasis in Portugal by PCR Fingerprinting of Candida Clinical Isolates. Journal of Clinical Microbiology, 2004, 42, 5899-5903.	1.8	31
24	Different scenarios for Candida parapsilosis fungaemia reveal high numbers of mixed C. parapsilosis and Candida orthopsilosis infections. Journal of Medical Microbiology, 2015, 64, 7-17.	0.7	30
25	Biodegradation of olive mill wastewaters by a wild isolate of Candida oleophila. International Biodeterioration and Biodegradation, 2012, 68, 45-50.	1.9	29
26	Analysis of clinical and environmental Candida parapsilosis isolates by microsatellite genotyping—a tool for hospital infection surveillance. Clinical Microbiology and Infection, 2015, 21, 954.e1-954.e8.	2.8	29
27	Epidemiology of candidemia in oncology patients: a 6-year survey in a Portuguese central hospital. Medical Mycology, 2010, 48, 346-354.	0.3	28
28	Serious fungal infections in Portugal. European Journal of Clinical Microbiology and Infectious Diseases, 2017, 36, 1345-1352.	1.3	26
29	First autochthone case of sporotrichosis by Sporothrix globosa in Portugal. Diagnostic Microbiology and Infectious Disease, 2014, 78, 388-390.	0.8	25
30	DODAB:monoolein liposomes containing Candida albicans cell wall surface proteins: A novel adjuvant and delivery system. European Journal of Pharmaceutics and Biopharmaceutics, 2015, 89, 190-200.	2.0	25
31	Learning from 80 years of studies: a comprehensive catalogue of non- <i>Saccharomyces</i> yeasts associated with viticulture and winemaking. FEMS Yeast Research, 2021, 21, .	1.1	25
32	Increased number of glutamine repeats in the C-terminal of Candida albicans Rlm1p enhances the resistance to stress agents. Antonie Van Leeuwenhoek, 2009, 96, 395-404.	0.7	24
33	Protective effect of antigen delivery using monoolein-based liposomes in experimental hematogenously disseminated candidiasis. Acta Biomaterialia, 2016, 39, 133-145.	4.1	24
34	Modified high-throughput Nile red fluorescence assay for the rapid screening of oleaginous yeasts using acetic acid as carbon source. BMC Microbiology, 2020, 20, 60.	1.3	24
35	The Role of Candida albicans Transcription Factor RLM1 in Response to Carbon Adaptation. Frontiers in Microbiology, 2018, 9, 1127.	1.5	23
36	Virulence Attenuation of Candida albicans Genetic Variants Isolated from a Patient with a Recurrent Bloodstream Infection. PLoS ONE, 2010, 5, e10155.	1.1	22

CéLIA PAIS

#	Article	IF	CITATIONS
37	New integrative computational approaches unveil the Saccharomyces cerevisiae pheno-metabolomic fermentative profile and allow strain selection for winemaking. Food Chemistry, 2016, 211, 509-520.	4.2	22
38	Microsatellite typing identifies the major clades of the human pathogen Candida albicans. Infection, Genetics and Evolution, 2010, 10, 697-702.	1.0	20
39	Differentiation of Saccharomyces cerevisiae populations from vineyards of the Azores Archipelago: Geography vs Ecology. Food Microbiology, 2018, 74, 151-162.	2.1	20
40	Distinctive electrophoretic isoenzyme profiles in Saccharomyces sensu stricto. International Journal of Systematic and Evolutionary Microbiology, 1999, 49, 1907-1913.	0.8	18
41	A new method for yeast phagocytosis analysis by flow cytometry. Journal of Microbiological Methods, 2014, 101, 56-62.	0.7	17
42	Single Cell Oil Production by Oleaginous Yeasts Grown in Synthetic and Waste-Derived Volatile Fatty Acids. Microorganisms, 2020, 8, 1809.	1.6	17
43	Evaluation of T3B fingerprinting for identification of clinical and environmental Sporothrix species. FEMS Microbiology Letters, 2015, 362, .	0.7	16
44	Genomic and transcriptomic analysis of Saccharomyces cerevisiae isolates with focus in succinic acid production. FEMS Yeast Research, 2017, 17, .	1.1	15
45	Multiplex PCR Based Strategy for Detection of Fungal Pathogen DNA in Patients with Suspected Invasive Fungal Infections. Journal of Fungi (Basel, Switzerland), 2020, 6, 308.	1.5	15
46	Epidemiology of candidemia in oncology patients: a 6-year survey in a Portuguese central hospital. Medical Mycology, 2010, 48, 1-10.	0.3	13
47	Oral <i>Candida albicans</i> colonization in healthy individuals: prevalence, genotypic diversity, stability along time and transmissibility. Journal of Oral Microbiology, 2020, 12, 1820292.	1.2	11
48	Development and Characterization of Monoolein-Based Liposomes of Carvacrol, Cinnamaldehyde, Citral, or Thymol with Anti- <i>Candida</i> Activities. Antimicrobial Agents and Chemotherapy, 2021, 65, .	1.4	10
49	Improvement of Torulaspora delbrueckii Genome Annotation: Towards the Exploitation of Genomic Features of a Biotechnologically Relevant Yeast. Journal of Fungi (Basel, Switzerland), 2021, 7, 287.	1.5	10
50	Isoenzyme Patterns: A Valuable Molecular Tool for the Differentiation of Zygosaccharomyces Species and Detection of Misidentified Isolates. Systematic and Applied Microbiology, 2004, 27, 436-442.	1.2	9
51	Genetic relatedness and antifungal susceptibility profile of <i>Candida albicans</i> isolates from fungaemia patients. Medical Mycology, 2011, 49, 248-252.	0.3	8
52	Candida bracarensis: Evaluation of Virulence Factors and its Tolerance to Amphotericin B and Fluconazole. Mycopathologia, 2015, 180, 305-315.	1.3	8
53	Starmerella vitis f.a., sp. nov., a yeast species isolated from flowers and grapes. Antonie Van Leeuwenhoek, 2020, 113, 1289-1298.	0.7	8
54	Waste-derived volatile fatty acids as carbon source for added-value fermentation approaches. FEMS Microbiology Letters, 2021, 368, .	0.7	8

CéLIA PAIS

#	Article	IF	CITATIONS
55	Genetic Variability ofCandida albicansSap8 Propeptide in Isolates from Different Types of Infection. BioMed Research International, 2015, 2015, 1-8.	0.9	6
56	Design and validation of a multiplex PCR protocol for microsatellite typing of Candida parapsilosis sensu stricto isolates. BMC Genomics, 2018, 19, 718.	1.2	6
57	Clavispora santaluciae f.a., sp. nov., a novel ascomycetous yeast species isolated from grapes. International Journal of Systematic and Evolutionary Microbiology, 2020, 70, 6307-6312.	0.8	6
58	Epidemiology of Invasive Candidiasis and Challenges for the Mycology Laboratory: Specificities of Candida glabrata. Current Clinical Microbiology Reports, 2014, 1, 1-9.	1.8	5
59	High variability within Candida albicans transcription factor RLM1: Isolates from vulvovaginal infections show a clear bias toward high molecular weight alleles. Medical Mycology, 2018, 56, 649-651.	0.3	3
60	Whole-Genome Sequencing and Annotation of the Yeast Clavispora santaluciae Reveals Important Insights about Its Adaptation to the Vineyard Environment. Journal of Fungi (Basel, Switzerland), 2022, 8, 52.	1.5	2
61	Population Analysis and Evolution of Saccharomyces cerevisiae Mitogenomes. Microorganisms, 2020, 8, 1001.	1.6	1
62	Vaccination Against Fungal Diseases: Lessons from Candida albicans. , 2017, , 207-242.		0