
## Harris A Gelbard

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/45906/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                               | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Mitochondrial membrane potential probes and the proton gradient: a practical usage guide.<br>BioTechniques, 2011, 50, 98-115.                                                                                                                         | 1.8 | 924       |
| 2  | Intracellular CXCR4 signaling, neuronal apoptosis and neuropathogenic mechanisms of HIV-1-associated dementia. Journal of Neuroimmunology, 1999, 98, 185-200.                                                                                         | 2.3 | 299       |
| 3  | Tumor Necrosis Factor α Inhibits Glutamate Uptake by Primary Human Astrocytes. Journal of Biological<br>Chemistry, 1996, 271, 15303-15306.                                                                                                            | 3.4 | 291       |
| 4  | Activated Protein C Prevents Neuronal Apoptosis via Protease Activated Receptors 1 and 3. Neuron, 2004, 41, 563-572.                                                                                                                                  | 8.1 | 243       |
| 5  | Reduced expression of glutamate transporter EAAT2 and impaired glutamate transport in human primary astrocytes exposed to HIV-1 or gp120. Virology, 2003, 312, 60-73.                                                                                 | 2.4 | 194       |
| 6  | Neuronal Fractalkine Expression in HIV-1 Encephalitis: Roles for Macrophage Recruitment and<br>Neuroprotection in the Central Nervous System. Journal of Immunology, 2000, 164, 1333-1339.                                                            | 0.8 | 186       |
| 7  | HIV-1 Tat Induces Neuronal Death via Tumor Necrosis Factor-α and Activation of<br>Non-N-methyl-d-aspartate Receptors by a NFκB-Independent Mechanism. Journal of Biological Chemistry,<br>1998, 273, 17852-17858.                                     | 3.4 | 171       |
| 8  | Neurotoxic Effects of Tumor Necrosis Factor Alpha in Primary Human Neuronal Cultures are<br>Mediated by Activation of the Glutamate AMPA Receptor Subtype: Implications for AIDS<br>Neuropathogenesis. Developmental Neuroscience, 1993, 15, 417-422. | 2.0 | 165       |
| 9  | HIV-1 Tat-Mediated Activation of Glycogen Synthase Kinase-3β Contributes to Tat-Mediated Neurotoxicity. Journal of Neurochemistry, 2002, 73, 578-586.                                                                                                 | 3.9 | 162       |
| 10 | Human immunodeficiency virus type 1 Tat protein induces death by apoptosis in primary human neuron<br>cultures. Journal of NeuroVirology, 1997, 3, 168-173.                                                                                           | 2.1 | 150       |
| 11 | Two-Photon NADH Imaging Exposes Boundaries of Oxygen Diffusion in Cortical Vascular Supply<br>Regions. Journal of Cerebral Blood Flow and Metabolism, 2011, 31, 68-81.                                                                                | 4.3 | 141       |
| 12 | Postnatal development of dopamine D1 and D2 receptor sites in rat striatum. Developmental Brain<br>Research, 1989, 49, 123-130.                                                                                                                       | 1.7 | 128       |
| 13 | Long-acting nanoformulated antiretroviral therapy elicits potent antiretroviral and neuroprotective responses in HIV-1-infected humanized mice. Aids, 2012, 26, 2135-2144.                                                                            | 2.2 | 121       |
| 14 | Platelet-activating Factor Receptor Activation. Journal of Biological Chemistry, 1998, 273, 17660-17664.                                                                                                                                              | 3.4 | 114       |
| 15 | Neuroprotective Activities of Sodium Valproate in a Murine Model of Human Immunodeficiency Virus-1<br>Encephalitis. Journal of Neuroscience, 2003, 23, 9162-9170.                                                                                     | 3.6 | 113       |
| 16 | Loss of Neuronal Integrity during Progressive HIV-1 Infection of Humanized Mice. Journal of Neuroscience, 2011, 31, 3148-3157.                                                                                                                        | 3.6 | 110       |
| 17 | Effects of human immunodeficiency virus type 1 on astrocyte gene expression and function: Potential role in neuropathogenesis. Journal of NeuroVirology, 2004, 10, 25-32.                                                                             | 2.1 | 102       |
| 18 | Tumor Necrosis Factor-Alpha in Normal and Diseased Brain: Conflicting Effects Via Intraneuronal<br>Receptor Crosstalk?. Journal of NeuroVirology, 2002, 8, 611-624.                                                                                   | 2.1 | 98        |

| #  | Article                                                                                                                                                                                                                                                                   | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | HIV-1 Tat Activates Neuronal Ryanodine Receptors with Rapid Induction of the Unfolded Protein<br>Response and Mitochondrial Hyperpolarization. PLoS ONE, 2008, 3, e3731.                                                                                                  | 2.5 | 96        |
| 20 | HIV-1 Transactivator of Transcription Protein Induces Mitochondrial Hyperpolarization and Synaptic Stress Leading to Apoptosis. Journal of Immunology, 2005, 174, 4333-4344.                                                                                              | 0.8 | 95        |
| 21 | Lithium therapy for human immunodeficiency virus type 1–associated neurocognitive impairment.<br>Journal of NeuroVirology, 2009, 15, 176-186.                                                                                                                             | 2.1 | 90        |
| 22 | Developmental Differences in Acute Nigrostriatal and Mesocorticolimbic System Response to<br>Haloperidol. Neuropsychopharmacology, 1993, 9, 147-156.                                                                                                                      | 5.4 | 86        |
| 23 | Activation of glycogen synthase kinase 3 beta (GSK-3β) by platelet activating factor mediates migration<br>and cell death in cerebellar granule neurons. European Journal of Neuroscience, 2001, 13, 1913-1922.                                                           | 2.6 | 85        |
| 24 | Comparison of Cell Cycle Arrest, Transactivation, and Apoptosis Induced by the Simian<br>Immunodeficiency Virus SIVagm and Human Immunodeficiency Virus Type 1 vpr Genes. Journal of<br>Virology, 2001, 75, 3791-3801.                                                    | 3.4 | 85        |
| 25 | HIV-1 infection of the developing nervous system: central role of astrocytes in pathogenesis. Virus<br>Research, 1994, 32, 253-267.                                                                                                                                       | 2.2 | 84        |
| 26 | HIV-1-induced neuronal injury in the developing brain. Journal of Leukocyte Biology, 1999, 65, 453-457.                                                                                                                                                                   | 3.3 | 82        |
| 27 | Neurotrophins prevent HIV Tat-induced neuronal apoptosis via a nuclear factor-κB (NF-κB)-dependent<br>mechanism. Journal of Neurochemistry, 2001, 78, 874-889.                                                                                                            | 3.9 | 81        |
| 28 | Functional Synergy between CD40 Ligand and HIV-1 Tat Contributes to Inflammation: Implications in HIV<br>Type 1 Dementia. Journal of Immunology, 2007, 178, 3226-3236.                                                                                                    | 0.8 | 79        |
| 29 | HIV-1 <i>Trans</i> Activator of Transcription Protein Elicits Mitochondrial Hyperpolarization and Respiratory Deficit, with Dysregulation of Complex IV and Nicotinamide Adenine Dinucleotide Homeostasis in Cortical Neurons. Journal of Immunology, 2007, 178, 869-876. | 0.8 | 78        |
| 30 | LRRK2 kinase inhibition prevents pathological microglial phagocytosis in response to HIV-1 Tat protein.<br>Journal of Neuroinflammation, 2012, 9, 261.                                                                                                                    | 7.2 | 77        |
| 31 | Complement-dependent synapse loss and microgliosis in a mouse model of multiple sclerosis. Brain,<br>Behavior, and Immunity, 2020, 87, 739-750.                                                                                                                           | 4.1 | 77        |
| 32 | Neurovascular and immune mechanisms that regulate postoperative delirium superimposed on dementia. Alzheimer's and Dementia, 2020, 16, 734-749.                                                                                                                           | 0.8 | 73        |
| 33 | Neuroprotective Mechanisms of Lithium in Murine Human Immunodeficiency Virus-1 Encephalitis.<br>Journal of Neuroscience, 2005, 25, 8375-8385.                                                                                                                             | 3.6 | 72        |
| 34 | Synaptic activity becomes excitotoxic in neurons exposed to elevated levels of platelet-activating factor. Journal of Clinical Investigation, 2005, 115, 3185-3192.                                                                                                       | 8.2 | 72        |
| 35 | Antioxidants are required during the early critical period, but not later, for neuronal survival.<br>Journal of Neuroscience Research, 2004, 78, 485-492.                                                                                                                 | 2.9 | 69        |
| 36 | Discovery, Synthesis, and Characterization of an Orally Bioavailable, Brain Penetrant Inhibitor of<br>Mixed Lineage Kinase 3. Journal of Medicinal Chemistry, 2013, 56, 8032-8048.                                                                                        | 6.4 | 69        |

| #  | Article                                                                                                                                                                                                                                           | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Simultaneous In Situ Detection of Apoptosis and Necrosis in Monolayer Cultures by TUNEL and Trypan<br>Blue Staining. BioTechniques, 1997, 22, 1102-1106.                                                                                          | 1.8  | 66        |
| 38 | The New Small-Molecule Mixed-Lineage Kinase 3 Inhibitor URMC-099 Is Neuroprotective and<br>Anti-Inflammatory in Models of Human Immunodeficiency Virus-Associated Neurocognitive Disorders.<br>Journal of Neuroscience, 2013, 33, 9998-10010.     | 3.6  | 65        |
| 39 | HIV-1 Tat-Induced Microgliosis and Synaptic Damage via Interactions between Peripheral and Central<br>Myeloid Cells. PLoS ONE, 2011, 6, e23915.                                                                                                   | 2.5  | 63        |
| 40 | Effects of Valproic Acid Coadministration on Plasma Efavirenz and Lopinavir Concentrations in<br>Human Immunodeficiency Virus-Infected Adults. Antimicrobial Agents and Chemotherapy, 2004, 48,<br>4328-4331.                                     | 3.2  | 59        |
| 41 | A Thin-skull Window Technique for Chronic Two-photon <em>In vivo</em> Imaging of<br>Murine Microglia in Models of Neuroinflammation. Journal of Visualized Experiments, 2010, , .                                                                 | 0.3  | 56        |
| 42 | Human Immunodeficiency Virus-1 Tat Activates Calpain Proteases via the Ryanodine Receptor to<br>Enhance Surface Dopamine Transporter Levels and Increase Transporter-Specific Uptake and Vmax.<br>Journal of Neuroscience, 2010, 30, 14153-14164. | 3.6  | 54        |
| 43 | Associations between brain microstructures, metabolites, and cognitive deficits during chronic HIV-1 infection of humanized mice. Molecular Neurodegeneration, 2014, 9, 58.                                                                       | 10.8 | 52        |
| 44 | Dopamine D1 receptor development depends on endogenous dopamine. Developmental Brain Research,<br>1990, 56, 137-140.                                                                                                                              | 1.7  | 50        |
| 45 | Inhibition of Mixed Lineage Kinase 3 Prevents HIV-1 Tat-Mediated Neurotoxicity and Monocyte Activation. Journal of Immunology, 2006, 177, 702-711.                                                                                                | 0.8  | 50        |
| 46 | Leucine-Rich Repeat Kinase 2 Modulates Neuroinflammation and Neurotoxicity in Models of Human<br>Immunodeficiency Virus 1-Associated Neurocognitive Disorders. Journal of Neuroscience, 2015, 35,<br>5271-5283.                                   | 3.6  | 50        |
| 47 | In Situ Trypan Blue Staining of Monolayer Cell Cultures for Permanent Fixation and Mounting.<br>BioTechniques, 1997, 22, 1020-1024.                                                                                                               | 1.8  | 49        |
| 48 | Endosomal Trafficking of Nanoformulated Antiretroviral Therapy Facilitates Drug Particle Carriage and HIV Clearance. Journal of Virology, 2014, 88, 9504-9513.                                                                                    | 3.4  | 48        |
| 49 | Neuroprotective Activities of CEP-1347 in Models of NeuroAIDS. Journal of Immunology, 2010, 184, 746-756.                                                                                                                                         | 0.8  | 47        |
| 50 | Autophagy facilitates macrophage depots of sustained-release nanoformulated antiretroviral drugs.<br>Journal of Clinical Investigation, 2017, 127, 857-873.                                                                                       | 8.2  | 44        |
| 51 | Neuropathogenesis of AIDS. Trends in Molecular Medicine, 1996, 2, 16-23.                                                                                                                                                                          | 2.6  | 43        |
| 52 | Human immunodeficiency virus-encoded Tat activates glycogen synthase kinase-3β to antagonize<br>nuclear factor-lºB survival pathway in neurons. European Journal of Neuroscience, 2006, 23, 2623-2634.                                            | 2.6  | 43        |
| 53 | The regulation of quinolinic acid in human immunodeficiency virus-infected monocytes. Journal of<br>NeuroVirology, 1996, 2, 111-117.                                                                                                              | 2.1  | 39        |
| 54 | Glycogen Synthase Kinase 3 Beta (GSK-3β) as a Therapeutic Target in NeuroAIDS. Journal of NeuroImmune<br>Pharmacology, 2007, 2, 93-96.                                                                                                            | 4.1  | 39        |

| #  | Article                                                                                                                                                                                                                 | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Functional Interplay Between Nuclear Factor-κB and c-Jun Integrated by Coactivator p300 Determines<br>the Survival of Nerve Growth Factor-Dependent PC12 Cells. Journal of Neurochemistry, 2001, 74,<br>527-539.        | 3.9 | 38        |
| 56 | Platelet-Activating Factor Receptors Mediate Excitatory Postsynaptic Hippocampal Injury in Experimental Autoimmune Encephalomyelitis. Journal of Neuroscience, 2016, 36, 1336-1346.                                     | 3.6 | 38        |
| 57 | Dopamine D1 autoreceptor function: possible expression in developing rat prefrontal cortex and striatum. Developmental Brain Research, 1991, 63, 229-235.                                                               | 1.7 | 36        |
| 58 | URMC-099 facilitates amyloid-β clearance in a murine model of Alzheimer's disease. Journal of<br>Neuroinflammation, 2018, 15, 137.                                                                                      | 7.2 | 36        |
| 59 | HIV-1-associated dementia: a basic science and clinical perspective. Aids Reader, 2002, 12, 358-68.                                                                                                                     | 0.3 | 34        |
| 60 | Protecting the Synapse: Evidence for a Rational Strategy to Treat HIV-1 Associated Neurologic Disease.<br>Journal of Neurolmmune Pharmacology, 2006, 1, 20-31.                                                          | 4.1 | 30        |
| 61 | Mixed-lineage kinase 3 pharmacological inhibition attenuates murine nonalcoholic steatohepatitis. JCI<br>Insight, 2017, 2, .                                                                                            | 5.0 | 30        |
| 62 | Neuroprotective strategies for HIV-1 associated dementia. Neurotoxicity Research, 2004, 6, 503-521.                                                                                                                     | 2.7 | 29        |
| 63 | Ultrastructure of microglia-synapse interactions in the HIV-1 Tat-injected murine central nervous system. Communicative and Integrative Biology, 2013, 6, e27670.                                                       | 1.4 | 27        |
| 64 | The mixed lineage kinase-3 inhibitor URMC-099 improves therapeutic outcomes for long-acting antiretroviral therapy. Nanomedicine: Nanotechnology, Biology, and Medicine, 2016, 12, 109-122.                             | 3.3 | 27        |
| 65 | The broad spectrum mixed-lineage kinase 3 inhibitor URMC-099 prevents acute microgliosis and cognitive decline in a mouse model of perioperative neurocognitive disorders. Journal of Neuroinflammation, 2019, 16, 193. | 7.2 | 25        |
| 66 | Proteasome blockers inhibit TNF-α release by lipopolysaccharide stimulated macrophages and microglia:<br>implications for HIV-1 dementia. Journal of Neuroimmunology, 1999, 95, 55-64.                                  | 2.3 | 24        |
| 67 | Release of the neuronal glycoprotein ICAM-5 in serum after hypoxic-ischemic injury. Annals of Neurology, 2000, 48, 590-602.                                                                                             | 5.3 | 24        |
| 68 | Development of a platelet-activating factor antagonist for HIV-1 associated neurocognitive disorders.<br>Journal of Neuroimmunology, 2009, 213, 47-59.                                                                  | 2.3 | 24        |
| 69 | Apoptosis in development and disease of the nervous system: II. Apoptosis in childhood neurologic<br>disease. Pediatric Neurology, 1997, 16, 93-97.                                                                     | 2.1 | 22        |
| 70 | The mixed-lineage kinase 3 inhibitor URMC-099 facilitates microglial amyloid-Î <sup>2</sup> degradation. Journal of<br>Neuroinflammation, 2016, 13, 184.                                                                | 7.2 | 22        |
| 71 | Survival and Motor Phenotypes in FVB C9-500 ALS/FTD BAC Transgenic Mice Reproduced by Multiple<br>Labs. Neuron, 2020, 108, 784-796.e3.                                                                                  | 8.1 | 22        |
| 72 | MLK3 regulates fMLP-stimulated neutrophil motility. Molecular Immunology, 2014, 58, 214-222.                                                                                                                            | 2.2 | 21        |

| #  | Article                                                                                                                                                                                                                                         | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Adjunctive therapies for HIV-1 associated neurologic disease. Neurotoxicity Research, 2005, 8, 161-166.                                                                                                                                         | 2.7  | 20        |
| 74 | Platelet Activating Factor Enhances Synaptic Vesicle Exocytosis Via PKC, Elevated Intracellular<br>Calcium, and Modulation of Synapsin 1 Dynamics and Phosphorylation. Frontiers in Cellular<br>Neuroscience, 2015, 9, 505.                     | 3.7  | 20        |
| 75 | Allotransplanted Neurons Used to Repair Peripheral Nerve Injury Do Not Elicit Overt Immunogenicity.<br>PLoS ONE, 2012, 7, e31675.                                                                                                               | 2.5  | 19        |
| 76 | Productive infection of primary murine astrocytes, lymphocytes, and macrophages by human immunodeficiency virus type 1 in culture. Journal of NeuroVirology, 2004, 10, 400-408.                                                                 | 2.1  | 18        |
| 77 | Effects of Minocycline and Valproic Acid Coadministration on Atazanavir Plasma Concentrations in<br>Human Immunodeficiency Virus-Infected Adults Receiving Atazanavir-Ritonavir. Antimicrobial Agents<br>and Chemotherapy, 2008, 52, 3035-3039. | 3.2  | 18        |
| 78 | The Sez6 Family Inhibits Complement by Facilitating Factor I Cleavage of C3b and Accelerating the Decay of C3 Convertases. Frontiers in Immunology, 2021, 12, 607641.                                                                           | 4.8  | 18        |
| 79 | Activation of adenosine A2A receptor protects sympathetic neurons against nerve growth factor withdrawal. Journal of Neuroscience Research, 2004, 77, 258-269.                                                                                  | 2.9  | 17        |
| 80 | The Phospholipid Mediator Platelet-Activating Factor Mediates Striatal Synaptic Facilitation. Journal of Neurolmmune Pharmacology, 2007, 2, 194-201.                                                                                            | 4.1  | 15        |
| 81 | Adjunctive and long-acting nanoformulated antiretroviral therapies for HIV-associated neurocognitive disorders. Current Opinion in HIV and AIDS, 2014, 9, 585-590.                                                                              | 3.8  | 15        |
| 82 | The Mixed-Lineage Kinase Inhibitor URMC-099 Protects Hippocampal Synapses in Experimental<br>Autoimmune Encephalomyelitis. ENeuro, 2018, 5, ENEURO.0245-18.2018.                                                                                | 1.9  | 15        |
| 83 | Matters of size: Roles of hyaluronan in CNS aging and disease. Ageing Research Reviews, 2021, 72, 101485.                                                                                                                                       | 10.9 | 15        |
| 84 | Neuroprotective Strategies for HIV-1-Associated Neurologic Disease. Annals of the New York Academy of Sciences, 1999, 890, 312-313.                                                                                                             | 3.8  | 14        |
| 85 | Immunohistochemical Assessment of Fractalkine, Inflammatory Cells, and Human Herpesvirus 7 in<br>Human Salivary Glands. Journal of Histochemistry and Cytochemistry, 2004, 52, 671-681.                                                         | 2.5  | 14        |
| 86 | Pharmacokinetic interactions of CEP-1347 and atazanavir in HIV-infected patients. Journal of NeuroVirology, 2013, 19, 254-260.                                                                                                                  | 2.1  | 14        |
| 87 | HIV Tat causes synapse loss in a mouse model of HIVâ€associated neurocognitive disorder that is<br>independent of the classical complement cascade component C1q. Glia, 2018, 66, 2563-2574.                                                    | 4.9  | 13        |
| 88 | Quantum Dots for Improved Single-Molecule Localization Microscopy. Journal of Physical Chemistry<br>B, 2021, 125, 2566-2576.                                                                                                                    | 2.6  | 12        |
| 89 | Rebuilding Synaptic Architecture in HIV-1 Associated Neurocognitive Disease: A Therapeutic Strategy<br>Based on Modulation of Mixed Lineage Kinase. Neurotherapeutics, 2010, 7, 392-398.                                                        | 4.4  | 11        |
| 90 | Near-field Quantification of Complement Receptor 1 (CR1/CD35) Protein Clustering in Human<br>Erythrocytes. Journal of NeuroImmune Pharmacology, 2012, 7, 539-543.                                                                               | 4.1  | 10        |

| #   | Article                                                                                                                                                                                                                          | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Pharmacologic Inhibition of MLK3 Kinase Activity Blocks the In Vitro Migratory Capacity of Breast<br>Cancer Cells but Has No Effect on Breast Cancer Brain Metastasis in a Mouse Xenograft Model. PLoS<br>ONE, 2014, 9, e108487. | 2.5 | 9         |
| 92  | Modulating cellular autophagy for controlled antiretroviral drug release. Nanomedicine, 2018, 13, 2139-2154.                                                                                                                     | 3.3 | 9         |
| 93  | The Neuropathogenesis of HIV-1 Infection. , 2004, , 95-115.                                                                                                                                                                      |     | 8         |
| 94  | Ablation of mixed lineage kinase 3 (Mlk3) does not inhibit ototoxicity induced by acoustic trauma or aminoglycoside exposure. Hearing Research, 2010, 270, 21-27.                                                                | 2.0 | 8         |
| 95  | The second generation mixed lineage kinase-3 (MLK3) inhibitor CLFB-1134 protects against<br>neurotoxin-induced nigral dopaminergic neuron loss. Experimental Neurology, 2019, 318, 157-164.                                      | 4.1 | 7         |
| 96  | Synapses and Sisyphus: life without paraplegin. Journal of Clinical Investigation, 2004, 113, 185-187.                                                                                                                           | 8.2 | 7         |
| 97  | Luciferase: a sensitive and quantitative probe for blood-brain barrier disruption. Journal of<br>Neuroscience Methods, 1998, 83, 159-164.                                                                                        | 2.5 | 6         |
| 98  | Progressive accumbens degeneration after neonatal striatal 6-hydroxydopamine in rats. Neuroscience<br>Letters, 1998, 247, 99-102.                                                                                                | 2.1 | 6         |
| 99  | Directional histogram ratio at random probes: A local thresholding criterion for capillary images.<br>Pattern Recognition, 2013, 46, 1933-1948.                                                                                  | 8.1 | 6         |
| 100 | Allotransplanted DRG neurons or Schwann cells affect functional recovery in a rodent model of sciatic nerve injury. Neurological Research, 2014, 36, 1020-1027.                                                                  | 1.3 | 6         |
| 101 | Broad Spectrum Mixed Lineage Kinase Type 3 Inhibition and HIV-1 Persistence in Macrophages. Journal of NeuroImmune Pharmacology, 2019, 14, 44-51.                                                                                | 4.1 | 6         |
| 102 | Clinical characteristics and outcomes after newâ€onset seizure among Zambian children with HIV<br>during the antiretroviral therapy era. Epilepsia Open, 2022, 7, 315-324.                                                       | 2.4 | 5         |
| 103 | URMCâ€099 prophylaxis prevents hippocampal vascular vulnerability and synaptic damage in an orthopedic model of delirium superimposed on dementia. FASEB Journal, 2022, 36, e22343.                                              | 0.5 | 5         |
| 104 | Characteristics of [3H]1α, 25-(OH)2D3 binding to nuclear fractions from rat pituitary adenoma GH3 cells. Life Sciences, 1981, 29, 1051-1056.                                                                                     | 4.3 | 4         |
| 105 | The darker side of varicella zoster infection. Neurology, 2020, 94, 193-194.                                                                                                                                                     | 1.1 | 4         |
| 106 | Lipids and cognition make good bedfellows for neuroAIDS. Neurology, 2013, 81, 1480-1481.                                                                                                                                         | 1.1 | 2         |
| 107 | Neuroimmune Pharmacology, 2nd Edition – A Perspective. Journal of NeuroImmune Pharmacology, 2017, 12, 211-212.                                                                                                                   | 4.1 | 1         |
| 108 | Evaluating the impact of antiretroviral and antiseizure medication interactions on treatment effectiveness among outpatient clinic attendees with HIV in Zambia. Epilepsia, 2020, 61, 2705-2711.                                 | 5.1 | 1         |

| #   | Article                                                                                                                                  | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | This Is Your Brain on (Low) Glucose. Trends in Neurosciences, 2020, 43, 933-935.                                                         | 8.6 | 1         |
| 110 | Release of the neuronal glycoprotein ICAMâ€5 in serum after hypoxicâ€ischemic injury. Annals of<br>Neurology, 2000, 48, 590-602.         | 5.3 | 1         |
| 111 | HIV-1-Derived Neurotoxic Factors: Effects on Human Neuronal Cultures. , 1995, , 61-71.                                                   |     | 1         |
| 112 | The Cell Culture Environment Regulates the Transcription Factor MafB in BV-2 Microglia. Matters, 2021, 2021, .                           | 1.0 | 1         |
| 113 | Elucidating the neuropathophysiology of COVID-19 using quantum dot biomimetics of SARS-CoV-2. , 2022, , .                                |     | 1         |
| 114 | Capillary extraction by detecting polarity in circular profiles. IET Image Processing, 2016, 10, 339-348.                                | 2.5 | 0         |
| 115 | Neuroimmunology and the Pathogenesis of HIV-1 Encephalitis in the HAART Era: Implications for Neuroprotective Treatment. , 0, , 137-149. |     | 0         |
| 116 | Human Immunodeficiency Virus Type 1 Infection. Frontiers in Neuroscience, 1998, , .                                                      | 0.0 | 0         |
| 117 | HIV-1 Infection of the CNS. , 1999, , 511-519.                                                                                           |     | 0         |
| 118 | HAND Adjunctive Therapies: Reversing Neuronal Injury. , 2015, , 1-6.                                                                     |     | 0         |
| 119 | HAND Adjunctive Therapies: Reversing Neuronal Injury. , 2018, , 599-604.                                                                 |     | 0         |