
Eun Duck Park

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/459027/publications.pdf Version: 2024-02-01

FUN DUCK DADK

#	Article	IF	CITATIONS
1	Enhanced photoelectrochemical stability of Ta3N5 in the acidic electrolyte conditions. Applied Surface Science, 2022, 583, 152566.	6.1	6
2	CO and CO2 Methanation over CeO2-Supported Cobalt Catalysts. Catalysts, 2022, 12, 212.	3.5	24
3	Gas-Phase Selective Oxidation of Methane into Methane Oxygenates. Catalysts, 2022, 12, 314.	3.5	8
4	Partial oxidation of methane with hydrogen peroxide over Fe-ZSM-5 catalyst. Catalysis Today, 2021, 376, 113-118.	4.4	18
5	Methane oxidation to formaldehyde over vanadium oxide supported on various mesoporous silicas. Korean Journal of Chemical Engineering, 2021, 38, 1224-1230.	2.7	5
6	Effect of amino-defective-MOF materials on the selective hydrodeoxygenation of fatty acid over Pt-based catalysts. Journal of Catalysis, 2021, 400, 283-293.	6.2	18
7	CulnS ₂ Photocathodes with Atomic Gradation-Controlled (Ta,Mo) <i>_x</i> (O,S) <i>_y</i> Passivation Layers for Efficient Photoelectrochemical H ₂ Production. ACS Applied Materials & Interfaces, 2021, 13, 58447-58457.	8.0	14
8	Aqueous-phase partial oxidation of methane with H2O2 over Fe-ZSM-5 catalysts prepared from different iron precursors. Microporous and Mesoporous Materials, 2021, 324, 111278.	4.4	10
9	Effects of hydrothermal oxidation time of Al on the catalytic performance of Ru/Al@Al2O3 for selective oxidation of CO in H2. Fuel, 2021, 301, 121040.	6.4	9
10	Catalytic hydrogenolysis of alkali lignin in supercritical ethanol over copper monometallic catalyst supported on a chromium-based metal–organic framework for the efficient production of aromatic monomers. Bioresource Technology, 2021, 342, 125941.	9.6	17
11	Continuous Synthesis of Methanol from Methane and Steam over Copper-Mordenite. ACS Catalysis, 2021, 11, 1065-1070.	11.2	28
12	Photoelectrochemical Conversion of Methane into Value-Added Products. Catalysts, 2021, 11, 1387.	3.5	15
13	CO and CO2 methanation over M (M Mn, Ce, Zr, Mg, K, Zn, or V)-promoted Ni/Al@Al2O3 catalysts. Catalysis Today, 2020, 348, 80-88.	4.4	39
14	CO and CO methanation over Ni/Al@Al O3 core–shell catalyst. Catalysis Today, 2020, 356, 622-630.	4.4	23
15	Selective CO oxidation in the hydrogen stream over Ru/Al@Al2O3 catalysts. Catalysis Today, 2020, 352, 148-156.	4.4	13
16	Enhancement of aromatics from catalytic pyrolysis of yellow poplar: Role of hydrogen and methane decomposition. Bioresource Technology, 2020, 315, 123835.	9.6	46
17	Al2O3-Coated Ni/CeO2 nanoparticles as coke-resistant catalyst for dry reforming of methane. Catalysis Science and Technology, 2020, 10, 8283-8294.	4.1	22
18	Recent advances in catalytic co-pyrolysis of biomass and plastic waste for the production of petroleum-like hydrocarbons. Bioresource Technology, 2020, 310, 123473.	9.6	199

#	Article	IF	CITATIONS
19	Direct synthesis of oxygenates via partial oxidation of methane in the presence of O2 and H2 over a combination of Fe-ZSM-5 and Pd supported on an acid-functionalized porous polymer. Applied Catalysis A: General, 2020, 602, 117711.	4.3	19
20	Selective Oxidation of Methane over Fe-Zeolites by In Situ Generated H2O2. Catalysts, 2020, 10, 299.	3.5	18
21	CO2 Methanation over Ni/Al@MAl2O4 (M = Zn, Mg, or Mn) Catalysts. Catalysts, 2019, 9, 599.	3.5	20
22	Aqueousâ€Phase Selective Oxidation of Methane with Oxygen over Iron Salts and Pd/C in the Presence of Hydrogen. ChemCatChem, 2019, 11, 4247-4251.	3.7	18
23	Recent Progress in Direct Conversion of Methane to Methanol Over Copper-Exchanged Zeolites. Frontiers in Chemistry, 2019, 7, 514.	3.6	67
24	Aqueousâ€Phase Selective Oxidation of Methane with Oxygen over Iron Salts and Pd/C in the Presence of Hydrogen. ChemCatChem, 2019, 11, 4221-4221.	3.7	1
25	Active Ni/SiO2 catalysts with high Ni content for benzene hydrogenation and CO methanation. Applied Catalysis A: General, 2019, 581, 67-73.	4.3	20
26	CO and CO ₂ Methanation Over Ni/γ-Al ₂ O ₃ Prepared by Deposition-Precipitation Method. Journal of Nanoscience and Nanotechnology, 2019, 19, 3252-3262.	0.9	15
27	CO and CO2 Methanation Over Ni/SiC and Ni/SiO2 Catalysts. Topics in Catalysis, 2018, 61, 1537-1544.	2.8	43
28	Control of selectivity in methane conversion reactions in RF plasma: the influence of reaction conditions. Research on Chemical Intermediates, 2018, 44, 3761-3771.	2.7	6
29	Effects of Na content in Na/Ni/SiO 2 and Na/Ni/CeO 2 catalysts for CO and CO 2 methanation. Catalysis Today, 2018, 303, 159-167.	4.4	83
30	Continuous methanol synthesis directly from methane and steam over Cu(II)-exchanged mordenite. Korean Journal of Chemical Engineering, 2018, 35, 2145-2149.	2.7	21
31	SiO2@V2O5@Al2O3 core–shell catalysts with high activity and stability for methane oxidation to formaldehyde. Journal of Catalysis, 2018, 368, 134-144.	6.2	19
32	CO and CO2 Methanation Over Supported Cobalt Catalysts. Topics in Catalysis, 2017, 60, 714-720.	2.8	53
33	CO and CO 2 methanation over supported Ni catalysts. Catalysis Today, 2017, 293-294, 89-96.	4.4	227
34	Enhanced Selectivity for CO ₂ Adsorption on Mesoporous Silica with Alkali Metal Halide Due to Electrostatic Field: A Molecular Simulation Approach. ACS Applied Materials & Interfaces, 2017, 9, 31683-31690.	8.0	14
35	CO and CO2 methanation over Ni catalysts supported on alumina with different crystalline phases. Korean Journal of Chemical Engineering, 2017, 34, 3085-3091.	2.7	42
36	Steam reforming of ethylene glycol over Ni-based catalysts: the effect of K. Research on Chemical Intermediates, 2016, 42, 223-235.	2.7	6

#	Article	IF	CITATIONS
37	A highly loaded Ni@SiO2 core–shell catalyst for CO methanation. Applied Catalysis A: General, 2016, 513, 98-105.	4.3	66
38	Dehydration of d-xylose over SiO2-Al2O3 catalyst: Perspective on the pathways for condensed products. Korean Journal of Chemical Engineering, 2016, 33, 806-811.	2.7	2
39	Preferential oxidation of CO in a hydrogen-rich stream over Au/MO /Al2O3 (M = La, Ce, and Mg) catalysts. Catalysis Today, 2016, 265, 19-26.	4.4	12
40	Propane combustion over Pt/Al2O3 catalysts with different crystalline structures of alumina. Korean Journal of Chemical Engineering, 2015, 32, 2212-2219.	2.7	30
41	Partial least squares modeling and analysis of furfural production from biomass-derived xylose over solid acid catalysts. Journal of Industrial and Engineering Chemistry, 2015, 21, 350-355.	5.8	14
42	Optimal Ru particle size for selective CO oxidation in H2 over Ru/κ-Al2O3. Korean Journal of Chemical Engineering, 2014, 31, 1985-1993.	2.7	8
43	Kinetic modeling of hydrocracking reaction in a trickle-bed reactor with Pt/Y-zeolite catalysts. Korean Journal of Chemical Engineering, 2014, 31, 419-426.	2.7	2
44	Effects of dealumination and desilication of H-ZSM-5 on xylose dehydration. Microporous and Mesoporous Materials, 2014, 186, 121-129.	4.4	73
45	Effects of Surface Area of Co–Mn–O Catalysts on the Selective CO Oxidation in H2. Catalysis Letters, 2014, 144, 607-614.	2.6	8
46	Steam reforming of methanol over Cu/ZnO/ZrO2/Al2O3 catalyst. International Journal of Hydrogen Energy, 2014, 39, 11517-11527.	7.1	60
47	Recent Advances in Preferential Oxidation of CO in H2 Over Gold Catalysts. Catalysis Surveys From Asia, 2014, 18, 75-88.	2.6	61
48	Liquid-phase dehydration of d-xylose over silica–alumina catalysts with different alumina contents. Reaction Kinetics, Mechanisms and Catalysis, 2014, 111, 521-534.	1.7	20
49	Effect of Pt Particle Size on Propane Combustion Over Pt/ZSM-5. Catalysis Letters, 2013, 143, 1132-1138.	2.6	25
50	Hydrogenolysis of cellulose into polyols over Ni/W/SiO2 catalysts. Applied Catalysis A: General, 2013, 466, 161-168.	4.3	32
51	CO methanation over supported Mo catalysts in the presence of H2S. Catalysis Communications, 2013, 35, 68-71.	3.3	28
52	Markedly High Catalytic Activity of Supported Pt–MoO _{<i>x</i>} Nanoclusters for Methanol Reforming to Hydrogen at Low Temperatures. ChemCatChem, 2013, 5, 806-814.	3.7	9
53	Effect of Al content on hydrocracking of n-paraffin over Pt/SiO2–Al2O3. Catalysis Communications, 2012, 26, 78-82.	3.3	10
54	Active size-controlled Ru catalysts for selective CO oxidation in H2. Applied Catalysis B: Environmental, 2012, 127, 129-136.	20.2	17

#	Article	IF	CITATIONS
55	Role of surface hydrophilicity of alumina in methanol dehydration. Catalysis Communications, 2012, 20, 63-67.	3.3	25
56	Selective CO oxidation in a hydrogen-rich stream over Ru/SiO2. Catalysis Today, 2012, 185, 143-150.	4.4	32
57	Water–gas shift reaction over Pt and Pt–CeO x supported on Ce x Zr 1â^'x O 2. International Journal of Hydrogen Energy, 2012, 37, 1465-1474.	7.1	24
58	Direct conversion of cellulose into polyols over Ni/W/SiO2-Al2O3. Bioresource Technology, 2012, 114, 684-690.	9.6	68
59	Direct Conversion of Cellulose into Polyols over Pt Catalysts Supported on Zeolites. Korean Chemical Engineering Research, 2012, 50, 435-441.	0.2	1
60	Green organophotocatalysis. TiO2-induced enantioselective α-oxyamination of aldehydes. Catalysis Science and Technology, 2011, 1, 923.	4.1	45
61	Kinetic study of the dehydration of d-xylose in high temperature water. Reaction Kinetics, Mechanisms and Catalysis, 2011, 103, 267-277.	1.7	25
62	Propane combustion over supported Pt catalysts. Research on Chemical Intermediates, 2011, 37, 1135-1143.	2.7	9
63	Dehydration of D-xylose into furfural over H-zeolites. Korean Journal of Chemical Engineering, 2011, 28, 710-716.	2.7	84
64	Direct conversion of cellulose into polyols or H2 over Pt/Na(H)-ZSM-5. Korean Journal of Chemical Engineering, 2011, 28, 744-750.	2.7	27
65	A comparative study for gas-phase dehydration of glycerol over H-zeolites. Applied Catalysis A: General, 2011, 393, 275-287.	4.3	136
66	Gas-phase dehydration of glycerol over silica–alumina catalysts. Applied Catalysis B: Environmental, 2011, 107, 177-187.	20.2	113
67	OPTIMIZATION STRATEGY FOR A FISCHER-TROPSCH SYNTHESIS BENCH-SCALE REACTOR: EFFECT OF OBJECTIVE ELEMENTS ON OPTIMIZATION PERFORMANCE. Chemical Engineering Communications, 2011, 198, 1075-1092.	2.6	4
68	10.2478/s11814-009-0290-8., 2011, 27, 49.		0
69	10.2478/s11814-009-0341-1., 2011, 26, 1591.		0
70	10.2478/s11814-009-0203-x., 2011, 26, 1291.		0
71	NO oxidation over supported cobalt oxide catalysts. Korean Journal of Chemical Engineering, 2010, 27, 49-54.	2.7	16
72	The effect of cobalt precursors on NO oxidation over supported cobalt oxide catalysts. Korean Journal of Chemical Engineering, 2010, 27, 822-827.	2.7	9

#	Article	IF	CITATIONS
73	Water-gas shift reaction over supported Pt and Pt-CeOx catalysts. Korean Journal of Chemical Engineering, 2010, 27, 1123-1131.	2.7	16
74	Steam reforming of liquid petroleum gas over Mn-promoted Ni/γ-Al2O3 catalysts. Korean Journal of Chemical Engineering, 2010, 27, 1132-1138.	2.7	17
75	Propane combustion over supported Pd catalysts. Research on Chemical Intermediates, 2010, 36, 603-611.	2.7	12
76	Correlation between acidity and catalytic activity for the methanol dehydration over various aluminum oxides. Research on Chemical Intermediates, 2010, 36, 653-660.	2.7	41
77	Gas-phase dehydration of glycerol over ZSM-5 catalysts. Microporous and Mesoporous Materials, 2010, 131, 28-36.	4.4	197
78	The effect of the crystalline phase of alumina on the selective CO oxidation in a hydrogen-rich stream over Ru/Al2O3. Applied Catalysis B: Environmental, 2010, 96, 41-50.	20.2	58
79	Interactions Between Tetrahydrothiophene (THT) and Silver Species in AgNa-Y. Journal of Nanoscience and Nanotechnology, 2010, 10, 203-210.	0.9	1
80	Effects of preparation methods for V2O5-TiO2 aerogel catalysts on the selective catalytic reduction of NO with NH3. Korean Journal of Chemical Engineering, 2009, 26, 884-889.	2.7	16
81	The effect of metal ions in MNaY-zeolites for the adsorptive removal of tetrahydrothiophene. Korean Journal of Chemical Engineering, 2009, 26, 1291-1295.	2.7	10
82	Kinetic parameter estimation of the Fischer-Tropsch synthesis reaction on K/Fe-Cu-Al catalysts. Korean Journal of Chemical Engineering, 2009, 26, 1591-1600.	2.7	15
83	Recent progress in selective CO removal in a H2-rich stream. Catalysis Today, 2009, 139, 280-290.	4.4	430
84	Preferential CO oxidation over supported noble metal catalysts. Catalysis Today, 2009, 146, 253-259.	4.4	65
85	Transesterification between dimethyl carbonate and phenol in the presence of (NH4)8Mo10O34 as a catalyst precursor. Applied Catalysis A: General, 2009, 361, 26-31.	4.3	21
86	Selective CO removal in a H2-rich stream over supported Ru catalysts for the polymer electrolyte membrane fuel cell (PEMFC). Applied Catalysis A: General, 2009, 366, 363-369.	4.3	63
87	Water-gas shift reaction over supported Pt-CeOx catalysts. Applied Catalysis B: Environmental, 2009, 90, 45-54.	20.2	35
88	Deactivation phenomena of MoO3/SiO2 and TiO2/SiO2 during transesterification between dimethyl carbonate and phenol. Applied Catalysis A: General, 2009, 356, 211-215.	4.3	25
89	Simultaneous removal of particulates and NO by the catalytic bag filter containing MnOx catalysts. Korean Journal of Chemical Engineering, 2009, 26, 86-89.	2.7	19
90	Adsorptive removal of tetrahydrothiophene (THT) and tert-butylmercaptan (TBM) using Na-Y and AgNa-Y zeolites for fuel cell applications. Applied Catalysis A: General, 2008, 334, 129-136.	4.3	32

#	Article	IF	CITATIONS
91	The Effect of Physicochemical Treatment on Pd Dispersion of Carbon-Supported Pd Catalysts. Solid State Phenomena, 2008, 135, 57-60.	0.3	0
92	Nano-Sized Au/CeO ₂ Catalysts for Total and Selective CO Oxidation. Solid State Phenomena, 2007, 124-126, 1749-1752.	0.3	1
93	Selective CO removal in the H2-rich stream through a double-bed system composed of non-noble metal catalysts. Studies in Surface Science and Catalysis, 2007, 167, 171-176.	1.5	4
94	Supported Pt–Co Catalysts for Selective CO Oxidation in a Hydrogen-Rich Stream. Angewandte Chemie - International Edition, 2007, 46, 734-737.	13.8	150
95	Manganese oxide catalysts for NOx reduction with NH3 at low temperatures. Applied Catalysis A: General, 2007, 327, 261-269.	4.3	733
96	Low-temperature catalytic reduction of nitrogen oxides with ammonia over supported manganese oxide catalysts. Korean Journal of Chemical Engineering, 2007, 24, 191-195.	2.7	27
97	A comparative study of catalysts for the preferential CO oxidation in excess hydrogen. Catalysis Today, 2006, 116, 377-383.	4.4	91
98	Novel MnOx Catalysts for NO Reduction at Low Temperature with Ammonia. Catalysis Letters, 2006, 106, 77-80.	2.6	67
99	Pt–Ni/γ-Al2O3 catalyst for the preferential CO oxidation in the hydrogen stream. Catalysis Letters, 2006, 110, 275-279.	2.6	68
100	Selective CO oxidation in the presence of hydrogen over supported Pt catalysts promoted with transition metals. Korean Journal of Chemical Engineering, 2006, 23, 182-187.	2.7	23
101	Nanosized Pt-Co Catalysts for the Preferential CO Oxidation. Journal of Nanoscience and Nanotechnology, 2006, 6, 3567-3571.	0.9	8
102	Nature and role of active states of Pd and Cu in the oxidative carbonylation of phenols with Pd/C and cuprous oxide. Journal of Catalysis, 2003, 218, 334-347.	6.2	17
103	Effects of inorganic cocatalysts and initial states of Pd on the oxidative carbonylation of phenols over heterogeneous Pd/C. Applied Catalysis A: General, 2003, 242, 335-345.	4.3	17
104	Copper- and vanadium-catalyzed methane oxidation into oxygenates with in situ generated H2O2 over Pd/C. Applied Catalysis A: General, 2003, 247, 269-281.	4.3	47
105	Mn-Promoted Ni/Al2O3 Catalysts for Stable Carbon Dioxide Reforming of Methane. Journal of Catalysis, 2002, 209, 6-15.	6.2	124
106	Easily separable molecular catalysis. Catalysis Today, 2000, 63, 147-157.	4.4	20
107	Oxidative carbonylation of phenol to diphenyl carbonate over supported palladium catalysts. Journal of Molecular Catalysis A, 2000, 154, 243-250.	4.8	58
108	Characterization of Pd/C and Cu Catalysts for the Oxidation of Methane to a Methanol Derivative. Journal of Catalysis, 2000, 194, 33-44.	6.2	22

#	Article	IF	CITATIONS
109	Effects of Pretreatment Conditions on CO Oxidation over Supported Au Catalysts. Journal of Catalysis, 1999, 186, 1-11.	6.2	392
110	Effects of Copper Phase on CO Oxidation over Supported Wacker-Type Catalysts. Journal of Catalysis, 1998, 180, 123-131.	6.2	53