
Bi-Cheng Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4590124/publications.pdf Version: 2024-02-01

RI-CHENCLUL

#	Article	IF	CITATIONS
1	Renal tubule injury: a driving force toward chronic kidney disease. Kidney International, 2018, 93, 568-579.	2.6	504
2	Roxadustat Treatment for Anemia in Patients Undergoing Long-Term Dialysis. New England Journal of Medicine, 2019, 381, 1011-1022.	13.9	411
3	Roxadustat for Anemia in Patients with Kidney Disease Not Receiving Dialysis. New England Journal of Medicine, 2019, 381, 1001-1010.	13.9	403
4	Acute kidney injury in China: a cross-sectional survey. Lancet, The, 2015, 386, 1465-1471.	6.3	319
5	Exosomal miRNA-19b-3p of tubular epithelial cells promotes M1 macrophage activation in kidney injury. Cell Death and Differentiation, 2020, 27, 210-226.	5.0	232
6	Epidemiology and Clinical Correlates of AKI in Chinese Hospitalized Adults. Clinical Journal of the American Society of Nephrology: CJASN, 2015, 10, 1510-1518.	2.2	210
7	Cytokine storm syndrome in coronavirus disease 2019: A narrative review. Journal of Internal Medicine, 2021, 289, 147-161.	2.7	177
8	Exosomal CCL2 from Tubular Epithelial Cells Is Critical for Albumin-Induced Tubulointerstitial Inflammation. Journal of the American Society of Nephrology: JASN, 2018, 29, 919-935.	3.0	168
9	HIF-1α inducing exosomal microRNA-23a expression mediates the cross-talk between tubular epithelial cells and macrophages in tubulointerstitial inflammation. Kidney International, 2019, 95, 388-404.	2.6	147
10	Extracellular vesicle–encapsulated IL-10 as novel nanotherapeutics against ischemic AKI. Science Advances, 2020, 6, eaaz0748.	4.7	147
11	Hydroxychloroquine attenuates renal ischemia/reperfusion injury by inhibiting cathepsin mediated NLRP3 inflammasome activation. Cell Death and Disease, 2018, 9, 351.	2.7	139
12	Exosomal miR-125b-5p deriving from mesenchymal stem cells promotes tubular repair by suppression of p53 in ischemic acute kidney injury. Theranostics, 2021, 11, 5248-5266.	4.6	122
13	Employing Macrophage-Derived Microvesicle for Kidney-Targeted Delivery of Dexamethasone: An Efficient Therapeutic Strategy against Renal Inflammation and Fibrosis. Theranostics, 2019, 9, 4740-4755.	4.6	112
14	<i>miR-26a</i> Limits Muscle Wasting and Cardiac Fibrosis through Exosome-Mediated microRNA Transfer in Chronic Kidney Disease. Theranostics, 2019, 9, 1864-1877.	4.6	108
15	MMP-2 and 9 in Chronic Kidney Disease. International Journal of Molecular Sciences, 2017, 18, 776.	1.8	101
16	CD2AP mRNA in urinary exosome as biomarker of kidney disease. Clinica Chimica Acta, 2014, 428, 26-31.	0.5	97
17	Activation of the Nlrp3 inflammasome by mitochondrial reactive oxygen species: A novel mechanism of albumin-induced tubulointerstitial inflammation. International Journal of Biochemistry and Cell Biology, 2014, 57, 7-19.	1.2	89
18	Urinary Podocyte-Associated mRNA profile in Various Stages of Diabetic Nephropathy. PLoS ONE, 2011, 6, e20431.	1.1	82

#	Article	IF	CITATIONS
19	Extracellular vesicle-based Nanotherapeutics: Emerging frontiers in anti-inflammatory therapy. Theranostics, 2020, 10, 8111-8129.	4.6	67
20	Application of Antibody Array Technology in the Analysis of Urinary Cytokine Profiles in Patients with Chronic Kidney Disease. American Journal of Nephrology, 2006, 26, 483-490.	1.4	59
21	Extracellular Vesicles: Opportunities and Challenges for the Treatment of Renal Diseases. Frontiers in Physiology, 2019, 10, 226.	1.3	56
22	NLRP3 inflammasome activation is involved in Ang II-induced kidney damage via mitochondrial dysfunction. Oncotarget, 2016, 7, 54290-54302.	0.8	55
23	Gut microbiota dysbiosis-induced activation of the intrarenal renin–angiotensin system is involved in kidney injuries in rat diabetic nephropathy. Acta Pharmacologica Sinica, 2020, 41, 1111-1118.	2.8	50
24	Kim-1 Targeted Extracellular Vesicles: A New Therapeutic Platform for RNAi to Treat AKI. Journal of the American Society of Nephrology: JASN, 2021, 32, 2467-2483.	3.0	50
25	Active vitamin D regulates macrophage M1/M2 phenotypes via the STATâ€1â€TREMâ€1 pathway in diabetic nephropathy. Journal of Cellular Physiology, 2019, 234, 6917-6926.	2.0	47
26	Overendocytosis of gold nanoparticles increases autophagy and apoptosis in hypoxic human renal proximal tubular cells. International Journal of Nanomedicine, 2014, 9, 4317.	3.3	45
27	Treatment of Renal Anemia with Roxadustat: Advantages and Achievement. Kidney Diseases (Basel,) Tj ETQq1 1	0.784314 1.2	rgBT /Overloo
28	Albumin caused the increasing production of angiotensin II due to the dysregulation of ACE/ACE2 expression in HK2 cells. Clinica Chimica Acta, 2009, 403, 23-30.	0.5	40
29	Epidemiology and outcomes of acute kidney injury in elderly chinese patients: a subgroup analysis from the EACH study. BMC Nephrology, 2016, 17, 136.	0.8	39
30	Hypoxia and chronic kidney disease. EBioMedicine, 2022, 77, 103942.	2.7	35
31	Role of connective tissue growth factor (CTGF) module 4 in regulating epithelial mesenchymal transition (EMT) in HK-2 cells. Clinica Chimica Acta, 2006, 373, 144-150.	0.5	33
32	Inhibition of Integrin-Linked Kinase via a siRNA Expression Plasmid Attenuates Connective Tissue Growth Factor-Induced Human Proximal Tubular Epithelial Cells to Mesenchymal Transition. American Journal of Nephrology, 2008, 28, 143-151.	1.4	32
33	Mechanisms of irbesartan in prevention of renal lesion in streptozotocin-induced diabetic rats. Acta Pharmacologica Sinica, 2003, 24, 67-73.	2.8	30
34	The profibrotic effects of MKâ€8617 on tubulointerstitial fibrosis mediated by the KLF5 regulating pathway. FASEB Journal, 2019, 33, 12630-12643.	0.2	29
35	Urinary mRNA markers of epithelial–mesenchymal transition correlate with progression of diabetic nephropathy. Clinical Endocrinology, 2012, 76, 657-664.	1.2	26
36	Inflammation-activated CXCL16 pathway contributes to tubulointerstitial injury in mouse diabetic nephropathy. Acta Pharmacologica Sinica, 2018, 39, 1022-1033.	2.8	25

#	Article	IF	CITATIONS
37	FTY720 inhibits tubulointerstitial inflammation in albumin overload-induced nephropathy of rats via the Sphk1 pathway. Acta Pharmacologica Sinica, 2014, 35, 1537-1545.	2.8	22
38	Role of crosstalk between endothelial cells and smooth muscle cells in vascular calcification in chronic kidney disease. Cell Proliferation, 2021, 54, e12980.	2.4	21
39	Investigation of the prevalence of CKD in 13,383 Chinese hospitalized adult patients. Clinica Chimica Acta, 2008, 387, 128-132.	0.5	20
40	Combined Blockade of Smad3 and JNK Pathways Ameliorates Progressive Fibrosis in Folic Acid Nephropathy. Frontiers in Pharmacology, 2019, 10, 880.	1.6	20
41	Extracellular vesicles for renal therapeutics: State of the art and future perspective. Journal of Controlled Release, 2022, 349, 32-50.	4.8	20
42	Effects of autophagy on macrophage adhesion and migration in diabetic nephropathy. Renal Failure, 2019, 41, 682-690.	0.8	19
43	Platelet microparticles contribute to aortic vascular endothelial injury in diabetes via the mTORC1 pathway. Acta Pharmacologica Sinica, 2019, 40, 468-476.	2.8	18
44	Effects of Sacubitril/Valsartan on resistant hypertension and myocardial work in hemodialysis patients. Journal of Clinical Hypertension, 2022, 24, 300-308.	1.0	17
45	Forecast of the incidence, prevalence and burden of end-stage renal disease in Nanjing, China to the Year 2025. BMC Nephrology, 2016, 17, 60.	0.8	16
46	HIF-1α is transcriptionally regulated by NF-κB in acute kidney injury. American Journal of Physiology - Renal Physiology, 2021, 321, F225-F235.	1.3	16
47	Identification of Lumican and Fibromodulin as Hub Genes Associated with Accumulation of Extracellular Matrix in Diabetic Nephropathy. Kidney and Blood Pressure Research, 2021, 46, 275-285.	0.9	15
48	Urinary small extracellular vesicles derived CCL21 mRNA as biomarker linked with pathogenesis for diabetic nephropathy. Journal of Translational Medicine, 2021, 19, 355.	1.8	15
49	Influence of irbesartan on expression of ILK and its relationship with epithelial-mesenchymal transition in mice with unilateral ureteral obstruction. Acta Pharmacologica Sinica, 2007, 28, 1810-1818.	2.8	14
50	Rab7 empowers renal tubular epithelial cells with autophagy-mediated protection against albumin-induced injury. Experimental Cell Research, 2018, 370, 198-207.	1.2	14
51	Bioinformatics-based discovery of the urinary BBOX1 mRNA as a potential biomarker of diabetic kidney disease. Journal of Translational Medicine, 2019, 17, 59.	1.8	14
52	The PKCβ-p66shc-NADPH oxidase pathway plays a crucial role in diabetic nephropathy. Journal of Pharmacy and Pharmacology, 2019, 71, 338-347.	1.2	14
53	Risk factors for calciphylaxis in Chinese hemodialysis patients: a matched case-control study. Renal Failure, 2021, 43, 406-416.	0.8	14
54	VDR/Atg3 Axis Regulates Slit Diaphragm to Tight Junction Transition via p62-Mediated Autophagy Pathway in Diabetic Nephropathy. Diabetes, 2021, 70, 2639-2651.	0.3	14

#	Article	IF	CITATIONS
55	SAP130 released by damaged tubule drives necroinflammation via miRNA-219c/Mincle signaling in acute kidney injury. Cell Death and Disease, 2021, 12, 866.	2.7	14
56	Remote Ischemic Preconditioning Protects Cisplatin-Induced Acute Kidney Injury through the PTEN/AKT Signaling Pathway. Oxidative Medicine and Cellular Longevity, 2019, 2019, 1-10.	1.9	13
57	PTHâ€induced EndMT via miRâ€29aâ€5p/CSAP/Notch1 pathway contributed to valvular calcification in rats with CKD. Cell Proliferation, 2021, 54, e13018.	2.4	12
58	Urinary sediment CCL5 messenger RNA as a potential prognostic biomarker of diabetic nephropathy. CKJ: Clinical Kidney Journal, 2022, 15, 534-544.	1.4	12
59	Microinflammation is involved in the dysfunction of arteriovenous fistula in patients with maintenance hemodialysis. Chinese Medical Journal, 2008, 121, 2157-61.	0.9	12
60	A Single Chinese Center Investigation of Renal Artery Stenosis in 141 Consecutive Cases with Coronary Angiography. American Journal of Nephrology, 2004, 24, 630-634.	1.4	11
61	Urinary Biomarkers for Chronic Kidney Disease with a Focus on Gene Transcript. Chinese Medical Journal, 2017, 130, 2251-2256.	0.9	11
62	Rab27a dependent exosome releasing participated in albumin handling as a coordinated approach to lysosome in kidney disease. Cell Death and Disease, 2020, 11, 513.	2.7	11
63	The characteristics and mortality risk factors for acute kidney injury in different age groups in China—a cross sectional study. Renal Failure, 2016, 38, 1413-1417.	0.8	10
64	Elevated Urinary Neutrophil Gelatinase-Associated Lipocalin Is a Biomarker for Lupus Nephritis: A Systematic Review and Meta-Analysis. BioMed Research International, 2020, 2020, 1-18.	0.9	9
65	FIH-1-modulated HIF-1α C-TAD promotes acute kidney injury to chronic kidney disease progression via regulating KLF5 signaling. Acta Pharmacologica Sinica, 2021, 42, 2106-2119.	2.8	9
66	Use of the optimized sodium thiosulfate regimen for the treatment of calciphylaxis in Chinese patients. Renal Failure, 2022, 44, 914-922.	0.8	7
67	A Rat Model with Multivalve Calcification Induced by Subtotal Nephrectomy and High-Phosphorus Diet. Kidney Diseases (Basel, Switzerland), 2020, 6, 346-354.	1.2	5
68	A Novel Mechanism of Regulation for Exosome Secretion in the Diabetic Kidney. Diabetes, 2021, 70, 1440-1442.	0.3	4
69	Identifying subcutaneous tissue microcalcification by Fluoâ€3 AM imaging in cutaneous calciphylaxis. Experimental Dermatology, 2022, 31, 1632-1634.	1.4	4
70	Myeloid bodies caused by <i>COQ2</i> mutation: a case of concurrent COQ2 nephropathy and IgA nephropathy. CKJ: Clinical Kidney Journal, 2021, 14, 1697-1700.	1.4	1
71	The effect of L-arginine on the progression of chronic renal scarring in remnant kidney. Chinese Medical Journal, 2002, 115, 197-201.	0.9	1
72	Novel biomarkers for progression of chronic kidney disease. Chinese Medical Journal, 2010, 123, 1789-92.	0.9	1

#	Article	IF	CITATIONS
73	FP164URINARY KIDNEY-SPECIFIC MRNAS AS POTENTIAL BIOMARKERS OF GLOMERULONEPHRITIS: BIOINFORMATICS-BASED IDENTIFICATION AND PCR ARRAY FABRICATION. Nephrology Dialysis Transplantation, 2018, 33, i84-i85.	0.4	0
74	FP419FK506 ATTENUATES PROTEINURIA BY INHIBITING ENDOTHELIAL-TO-MESENCHYMAL TRANSITION IN RATS WITH DIABETIC NEPHROPATHY. Nephrology Dialysis Transplantation, 2018, 33, i176-i176.	0.4	0
75	P0987MIR-181A IMPROVED RENAL INFLAMMATION VIA TARGETING TNF-Î' IN DIABETIC NEPHROPATHY. Nephrology Dialysis Transplantation, 2020, 35, .	0.4	0
76	P0144LOW-ENERGY SHOCKWAVE TREATMENT PROMOTES ENDOTHELIAL PROGENITOR CELL HOMING TO THE STENOTIC PIG KIDNEY. Nephrology Dialysis Transplantation, 2020, 35, .	0.4	0
77	P0145MESENCHYMAL STEM CELLS PROTECT RENAL TUBULAR CELLS VIA TSG-6 REGULATED MACROPHAGE FUNCTION AND PHENOTYPE SWITCHING. Nephrology Dialysis Transplantation, 2020, 35, .	0.4	0
78	FC 084LIPOTOXICITY MEDIATED BY GPR43 ACTIVATION CONTRIBUTES TO PODOCYTE INJURY IN DIABETIC NEPHROPATHYÂTHROUGH MODULATING ERK/EGR1 PATHWAY. Nephrology Dialysis Transplantation, 2021, 36, .	0.4	0
79	FC 091URINARY CCL5 MRNA, A POTENTIAL BIOMARKER FOR PROGRESSION OF TYPE 2 DIABETIC NEPHROPATHY. Nephrology Dialysis Transplantation, 2021, 36, .	0.4	0
80	FC 005DEPOSITION OF PLATELET-DERIVED MICRO-PARTICLES IN PODOCYTES CONTRIBUTES TO DIABETIC NEPHROPATHY. Nephrology Dialysis Transplantation, 2021, 36, .	0.4	0
81	Brain insults caused by intermittent hypoxia due to endoplasmic reticulum stress, activated p66Shc and NADPH oxidase are attenuated by CPU86017-RS compound. WIT Transactions on Biomedicine and Health, 2014, , .	0.0	0
82	Connective tissue growth factor is associated with the early renal hypertrophy in uninephrectomized diabetic rats. Chinese Medical Journal, 2006, 119, 1010-6.	0.9	0
83	MO620: A LC-MS/MSÂ Analysis of Proteins from Urinary Exosomes in Diabetic Nephropathy. Nephrology Dialysis Transplantation, 2022, 37, .	0.4	0
84	FC 132: Deficiency of Proximal Tubular Cyclin-Dependent Kinase 12 Exacerbates Kidney Injury Through DNA-Damage Response. Nephrology Dialysis Transplantation, 2022, 37, .	0.4	0
85	MO619: Landscape RNA Profiling of Urinary Extracellular Vesicles in Patients with Diabetic Nephropathy. Nephrology Dialysis Transplantation, 2022, 37, .	0.4	0
86	MO441: Dynamic Role of Macrophage-Inducible C-Type Lectin in the Process of AKI-to-CKD Transition. Nephrology Dialysis Transplantation, 2022, 37, .	0.4	0
87	Tubular-specific CDK12 knockout causes a defect in urine concentration due to premature cleavage of the slc12a1 gene. Molecular Therapy, 2022, , .	3.7	0
88	High phosphorus mediated the release of Câ€Xâ€C motif chemokine ligand 8 in valvular interstitial cellsâ€induced endothelialâ€toâ€mesenchymal transition via miRâ€214/phosphatase and tensin homolog to promote valvular calcification in chronic kidney disease. Clinical and Translational Medicine, 2022, 12,	1.7	0