Chayan K Nandi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4590067/publications.pdf

Version: 2024-02-01

73 papers 2,047 citations

236833 25 h-index 254106 43 g-index

77 all docs

77 docs citations

77 times ranked

3224 citing authors

#	Article	IF	CITATIONS
1	Structural and spectroscopic characterization of pyrene derived carbon nano dots: a single-particle level analysis. Nanoscale, 2022, 14, 3568-3578.	2.8	6
2	Superparamagnetic Iron Oxide Nanoparticles with Large Magnetic Saturation and High Particle Photon Counts for Super-Resolution Imaging of Lysosomes. ACS Applied Nano Materials, 2022, 5, 4018-4027.	2.4	3
3	Quantum Dot-Embedded Hybrid Photocatalytic Nanoreactors for Visible Light Photocatalysis and Dye Degradation. ACS Applied Nano Materials, 2022, 5, 7427-7439.	2.4	11
4	SARS-CoV-2 Spike mutations modify the interaction between virus Spike and human ACE2 receptors. Biochemical and Biophysical Research Communications, 2022, 620, 8-14.	1.0	3
5	Near-Infrared-Emitting Silver Nanoclusters as Fluorescent Probes for Super-resolution Radial Fluctuation Imaging of Lysosomes. ACS Applied Nano Materials, 2022, 5, 9260-9265.	2.4	3
6	Absorption and emission of light in red emissive carbon nanodots. Chemical Science, 2021, 12, 3615-3626.	3.7	86
7	Effect of Protein Corona on the Drug Delivery of Carbogenic Nanodots and Their Mapping by Fluorescence Lifetime Imaging Microscopy. ACS Applied Bio Materials, 2021, 4, 5776-5785.	2.3	1
8	Structural Decoding of a Small Molecular Inhibitor on the Binding of SARS-CoV-2 to the ACE 2 Receptor. Journal of Physical Chemistry B, 2021, 125, 8395-8405.	1.2	10
9	Super-Resolution Microscopy Revealed the Lysosomal Expansion During Epigallocatechin Gallate-Mediated Apoptosis. Langmuir, 2021, 37, 10818-10826.	1.6	4
10	Emergence of Carbon Nanodots as a Probe for Super-Resolution Microscopy. Journal of Physical Chemistry C, 2021, 125, 1637-1653.	1.5	14
11	Graphitic Carbon Coated Magnetite Nanoparticles for Dual Mode Imaging and Hyperthermia. ACS Applied Nano Materials, 2020, 3, 896-904.	2.4	24
12	Direct visualization of the protein corona using carbon nanodots as a specific contrasting agent. Chemical Communications, 2020, 56, 13599-13602.	2.2	3
13	Cancer Cell Membrane Technology for Cancer Therapy. ChemNanoMat, 2020, 6, 1712-1729.	1.5	5
14	Fluorescent Probes for Super-Resolution Microscopy of Lysosomes. ACS Omega, 2020, 5, 26967-26977.	1.6	15
15	Magnetofluorescent Nanoprobe for Multimodal and Multicolor Bioimaging. Molecular Imaging, 2020, 19, 153601212096947.	0.7	2
16	Bovine Serum Albumin-Conjugated Red Emissive Gold Nanocluster as a Fluorescent Nanoprobe for Super-resolution Microscopy. Journal of Physical Chemistry Letters, 2020, 11, 5741-5748.	2.1	22
17	Serum albumin-mediated strategy for the effective targeting of SARS-CoV-2. Medical Hypotheses, 2020, 140, 109790.	0.8	27
18	Intrinsically disordered proteins of viruses: Involvement in the mechanism of cell regulation and pathogenesis. Progress in Molecular Biology and Translational Science, 2020, 174, 1-78.	0.9	54

#	Article	IF	CITATIONS
19	Polymorphic In-Plane Heterostructures of Monolayer WS ₂ for Light-Triggered Field-Effect Transistors. ACS Applied Nano Materials, 2020, 3, 3750-3759.	2.4	5
20	Real-Time Observation of Magnetic Field-Induced Fluorescence Engineering in SPIONs. Journal of Physical Chemistry C, 2019, 123, 27759-27764.	1.5	2
21	Paving the path to the future of carbogenic nanodots. Nature Communications, 2019, 10, 2391.	5. 8	39
22	Dual responsive specifically labelled carbogenic fluorescent nanodots for super resolution and electron microscopy. Nanoscale, 2019, 11, 6561-6565.	2.8	10
23	One Pot Synthesis of Amphiphilic Carbogenic Fluorescent Nanodots for Bioimaging. ChemNanoMat, 2019, 5, 417-421.	1.5	2
24	Carbon Dots for Studying Muscle Architecture. ACS Applied Nano Materials, 2019, 2, 7466-7472.	2.4	4
25	Unveiling the Hydrogen Bonding Network of Intracellular Water by Fluorescence Lifetime Imaging Microscopy. Journal of Physical Chemistry C, 2019, 123, 2673-2677.	1.5	16
26	Polymer Stabilized Bimetallic Alloy Nanoparticles: Synthesis and Catalytic Application. Colloids and Interface Science Communications, 2018, 24, 62-67.	2.0	41
27	Nitrogen-Doped Biocompatible Carbon Dot as a Fluorescent Probe for STORM Nanoscopy. Journal of Physical Chemistry C, 2018, 122, 4704-4709.	1.5	32
28	Phase engineering of seamless heterophase homojunctions with co-existing 3R and 2H phases in WS ₂ monolayers. Nanoscale, 2018, 10, 3320-3330.	2.8	27
29	Facile embedding of gold nanostructures in the hole transporting layer for efficient polymer solar cells. Organic Electronics, 2018, 54, 148-153.	1.4	7
30	Carbon Dots for Single-Molecule Imaging of the Nucleolus. ACS Applied Nano Materials, 2018, 1, 483-487.	2.4	67
31	Carbon coated core–shell multifunctional fluorescent SPIONs. Nanoscale, 2018, 10, 10389-10394.	2.8	24
32	Small molecular organic nanocrystals resemble carbon nanodots in terms of their properties. Chemical Science, 2018, 9, 175-180.	3.7	93
33	Towards Understanding Citric Acid Derived High Quantum Yield Molecular Fluorophores: From Carbon Dots to Spherical Organic Nanocrystals. Journal of Material Science & Engineering, 2018, 07, .	0.2	0
34	Mechanistic Insight into the Carbon Dots: Protonation induced Photoluminescence. Journal of Material Science & Engineering, 2018, 07, .	0.2	3
35	PC12 live cell ultrasensitive neurotransmitter signaling using high quantum yield sulphur doped carbon dots and its extracellular Ca2+ ion dependence. Sensors and Actuators B: Chemical, 2017, 245, 137-145.	4.0	28
36	Charge-Driven Fluorescence Blinking in Carbon Nanodots. Journal of Physical Chemistry Letters, 2017, 8, 5751-5757.	2.1	43

#	Article	IF	Citations
37	Labelling Proteins with Carbon Nanodots. ChemBioChem, 2017, 18, 2385-2389.	1.3	18
38	Effect of surface chemistry and morphology of gold nanoparticle on the structure and activity of common blood proteins. New Journal of Chemistry, 2016, 40, 4879-4883.	1.4	26
39	Paper strip based and live cell ultrasensitive lead sensor using carbon dots synthesized from biological media. Sensors and Actuators B: Chemical, 2016, 232, 107-114.	4.0	75
40	Synthesis of a dihydroquinoline based fluorescent cyanine for selective, naked eye, and turn off detection of Fe ³⁺ ions. RSC Advances, 2016, 6, 49724-49729.	1.7	15
41	Single-molecule analysis of fluorescent carbon dots towards localization-based super-resolution microscopy. Methods and Applications in Fluorescence, 2016, 4, 044006.	1.1	17
42	Carbon dots for naked eye colorimetric ultrasensitive arsenic and glutathione detection. Biosensors and Bioelectronics, 2016, 81, 465-472.	5.3	136
43	Kinetics of protein adsorption on gold nanoparticle with variable protein structure and nanoparticle size. Journal of Chemical Physics, 2015, 143, 164709.	1.2	46
44	Nitrogen-doped, thiol-functionalized carbon dots for ultrasensitive Hg(<scp>ii</scp>) detection. Chemical Communications, 2015, 51, 10750-10753.	2.2	114
45	Lysine and dithiothreitol promoted ultrasensitive optical and colorimetric detection of mercury using anisotropic gold nanoparticles. Journal of Materials Chemistry C, 2015, 3, 6962-6965.	2.7	24
46	One pot synthesis of doxorubicin loaded gold nanoparticles for sustained drug release. RSC Advances, 2015, 5, 97330-97334.	1.7	30
47	Reversible Photoswitching of Carbon Dots. Scientific Reports, 2015, 5, 11423.	1.6	60
48	Anisotropic gold nanoparticles for the highly sensitive colorimetric detection of glucose in human urine. RSC Advances, 2015, 5, 40849-40855.	1.7	10
49	Direct Visualization of Lead Corona and Its Nanomolar Colorimetric Detection Using Anisotropic Gold Nanoparticles. ACS Applied Materials & Samp; Interfaces, 2015, 7, 5039-5044.	4.0	26
50	Time-Resolved Emission Reveals Ensemble of Emissive States as the Origin of Multicolor Fluorescence in Carbon Dots. Nano Letters, 2015, 15, 8300-8305.	4.5	255
51	Orientational switching of protein conformation as a function of nanoparticle curvature and their geometrical fitting. Journal of Chemical Physics, 2014, 141, 084707.	1.2	18
52	Optimizing the underlying parameters for protein-nanoparticle interaction: advancement in theoretical simulation. Nanotechnology Reviews, 2014, 3, .	2.6	9
53	A New Liquid Droplet Laser Desorption Source Combined with Supersonic Jet Expansion: Application to Phenol and its Water Clusters. Zeitschrift Fur Physikalische Chemie, 2014, 228, 449-457.	1.4	0
54	Gold nanoparticle chitosan composite hydrogel beads show efficient removal of methyl parathion from waste water. RSC Advances, 2014, 4, 39830.	1.7	35

#	Article	IF	Citations
55	Synthesis of a dihydroquinoline based merocyanine as a †naked eye†and †fluorogenic†sensor for hydrazine hydrate in aqueous medium and hydrazine gas. RSC Advances, 2014, 4, 30712-30717.	1.7	25
56	Morphological effect of gold nanoparticles on the adsorption of bovine serum albumin. Physical Chemistry Chemical Physics, 2014, 16, 20471-20482.	1.3	53
57	Functional Molecular Lumino-Materials to Probe Serum Albumins: Solid Phase Selective Staining Through Noncovalent Fluorescent Labeling. ACS Applied Materials & Samp; Interfaces, 2014, 6, 10231-10237.	4.0	21
58	Structurally tuned benzo[h]chromene derivative as Pb2+ selective  turn-on' fluorescence sensor for living cell imaging. Journal of Luminescence, 2013, 143, 355-360.	1.5	13
59	Controlling the Fate of Protein Corona by Tuning Surface Properties of Nanoparticles. Journal of Physical Chemistry Letters, 2013, 4, 3747-3752.	2.1	50
60	Carboxylated †locking unit' directed ratiometric probe design, synthesis and application in selective recognition of Fe3+/Cu2+. RSC Advances, 2013, 3, 6271.	1.7	10
61	2-Aminopyridine derivative as fluorescence â€ [~] On–Off' molecular switch for selective detection of Fe3+/Hg2+. Tetrahedron Letters, 2012, 53, 2302-2307.	0.7	56
62	Binding of hairpin polyamides to DNA studied by fluorescence correlation spectroscopy for DNA nanoarchitectures. Analytical and Bioanalytical Chemistry, 2008, 390, 1595-1603.	1.9	4
63	Fluorescence correlation spectroscopy at single molecule level on the Tat–TAR complex and its inhibitors. Biopolymers, 2008, 89, 17-25.	1.2	9
64	Polyamide Struts for DNA Architectures. Angewandte Chemie - International Edition, 2007, 46, 4382-4384.	7.2	38
65	Identification of isomeric dimers of o-fluorobenzoic acid using laser-induced fluorescence spectroscopy. Chemical Physics Letters, 2005, 416, 261-267.	1.2	7
66	Vibrational coupling in carboxylic acid dimers. Journal of Chemical Physics, 2005, 123, 124310.	1.2	31
67	High-resolution ultraviolet spectroscopy of p-fluorostyrene-water: Evidence for a lf -type hydrogen-bonded dimer. Journal of Chemical Physics, 2005, 122, 244312.	1.2	11
68	Origin of methyl torsional barrier in 1-methyl-2-(1H)-pyridone. Journal of Chemical Physics, 2005, 122, 204323.	1.2	14
69	Hydrogen bond mediated rotor-ring coupling in acetic acid–benzoic acid mixed dimer. Journal of Chemical Physics, 2004, 121, 7562.	1.2	13
70	Conformational effects on vibronic spectra and excited state dynamics of 3-fluorobenzoic acid dimer. Journal of Chemical Physics, 2004, 121, 5261-5271.	1,2	11
71	Hydrogen bond-induced vibronic mode mixing in benzoic acid dimer: A laser-induced fluorescence study. Journal of Chemical Physics, 2004, 120, 8521-8527.	1.2	17
72	Structure and electronic spectroscopy of naphthalene–acenaphthene van der Waals dimer: Hole-burning, dispersed fluorescence, and quantum chemistry calculations. Journal of Chemical Physics, 2003, 118, 9589-9595.	1.2	9

#	Article	IF	CITATIONS
73	Exciplex emission from the mixed dimer of naphthalene and 2-cyanonaphthalene in a supersonic jet. Physical Chemistry Chemical Physics, 2002, 4, 2162-2168.	1.3	5