V Nathan Subramaniam

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4589953/publications.pdf Version: 2024-02-01

		101384	106150
123	4,711	36	65
papers	citations	h-index	g-index
132	132	132	5067
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Disrupted hepcidin regulation in HFE -associated haemochromatosis and the liver as a regulator of body iron homoeostasis. Lancet, The, 2003, 361, 669-673.	6.3	568
2	Combined deletion of Hfe and transferrin receptor 2 in mice leads to marked dysregulation of hepcidin and iron overload. Hepatology, 2009, 50, 1992-2000.	3.6	180
3	Screening for Hemochromatosis in Asymptomatic Subjects With or Without a Family History. Archives of Internal Medicine, 2006, 166, 294.	4.3	173
4	Novel mutation in ferroportin1 is associated with autosomal dominant hemochromatosis. Blood, 2002, 100, 692-694.	0.6	160
5	Hepcidin: regulation of the master iron regulator. Bioscience Reports, 2015, 35, .	1.1	159
6	First phenotypic description of transferrin receptor 2 knockout mouse, and the role of hepcidin. Gut, 2005, 54, 980-986.	6.1	135
7	Hypoxia induced downregulation of hepcidin is mediated by platelet derived growth factor BB. Gut, 2014, 63, 1951-1959.	6.1	127
8	Redox cycling metals: Pedaling their roles in metabolism and their use in the development of novel therapeutics. Biochimica Et Biophysica Acta - Molecular Cell Research, 2016, 1863, 727-748.	1.9	111
9	Endobrevin, a Novel Synaptobrevin/VAMP-Like Protein Preferentially Associated with the Early Endosome. Molecular Biology of the Cell, 1998, 9, 1549-1563.	0.9	108
10	Iron and non-alcoholic fatty liver disease. World Journal of Gastroenterology, 2016, 22, 8112.	1.4	108
11	Targeted Disruption of the Hepatic Transferrin Receptor 2 Gene in Mice Leads to Iron Overload. Gastroenterology, 2007, 132, 301-310.	0.6	107
12	Role of p97 and Syntaxin 5 in the Assembly of Transitional Endoplasmic Reticulum. Molecular Biology of the Cell, 2000, 11, 2529-2542.	0.9	100
13	The Clinical Relevance of Compound Heterozygosity for the C282Y and H63D Substitutions in Hemochromatosis. Clinical Gastroenterology and Hepatology, 2006, 4, 1403-1410.	2.4	92
14	Excess iron modulates endoplasmic reticulum stress-associated pathways in a mouse model of alcohol and high-fat diet-induced liver injury. Laboratory Investigation, 2013, 93, 1295-1312.	1.7	89
15	Autosomal dominant iron overload due to a novel mutation of ferroportin1 associated with parenchymal iron loading and cirrhosis. Journal of Hepatology, 2004, 40, 710-713.	1.8	83
16	A SNARE involved in protein transport through the Golgi apparatus. Nature, 1997, 389, 881-884.	13.7	81
17	Haemochromatosis in the new millenium. Journal of Hepatology, 2000, 32, 48-62.	1.8	80
18	Lymphotoxin-β receptor signaling regulates hepatic stellate cell function and wound healing in a murine model of chronic liver injury. Hepatology, 2009, 49, 227-239.	3.6	76

#	Article	IF	CITATIONS
19	Exome sequencing in HFE C282Y homozygous men with extreme phenotypes identifies a GNPAT variant associated with severe iron overload. Hepatology, 2015, 62, 429-439.	3.6	75
20	A novel mutation in ferroportin1 is associated with haemochromatosis in a Solomon Islands patient. Gut, 2003, 52, 1215-1217.	6.1	74
21	The liver in regulation of iron homeostasis. American Journal of Physiology - Renal Physiology, 2017, 313, G157-G165.	1.6	74
22	Carrier-Mediated Thyroid Hormone Transport into Placenta by Placental Transthyretin. Journal of Clinical Endocrinology and Metabolism, 2009, 94, 2610-2616.	1.8	70
23	Functional analysis and theoretical modeling of ferroportin reveals clustering of mutations according to phenotype. American Journal of Physiology - Cell Physiology, 2010, 298, C75-C84.	2.1	70
24	GS32, a Novel Golgi SNARE of 32 kDa, Interacts Preferentially with Syntaxin 6. Molecular Biology of the Cell, 1999, 10, 119-134.	0.9	68
25	A Novel Synaptobrevin/VAMP Homologous Protein (VAMP5) Is Increased during In Vitro Myogenesis and Present in the Plasma Membrane. Molecular Biology of the Cell, 1998, 9, 2423-2437.	0.9	65
26	The Mammalian Protein (rbet1) Homologous to Yeast Bet1p Is Primarily Associated with the Pre-Golgi Intermediate Compartment and Is Involved in Vesicular Transport from the Endoplasmic Reticulum to the Golgi Apparatus. Journal of Cell Biology, 1997, 139, 1157-1168.	2.3	60
27	The global prevalence of HFE and non-HFE hemochromatosis estimated from analysis of next-generation sequencing data. Genetics in Medicine, 2016, 18, 618-626.	1.1	55
28	A 29-Kilodalton Golgi SolubleN-Ethylmaleimide-sensitive Factor Attachment Protein Receptor (Vti1-rp2) Implicated in Protein Trafficking in the Secretory Pathway. Journal of Biological Chemistry, 1998, 273, 21783-21789.	1.6	54
29	Kupffer cells modulate iron homeostasis in mice via regulation of hepcidin expression. Journal of Molecular Medicine, 2008, 86, 825-835.	1.7	51
30	Frequency of the S65C mutation of HFE and iron overload in 309 subjects heterozygous for C282Y. Journal of Hepatology, 2002, 36, 474-479.	1.8	48
31	A novel mouse model of veno-occlusive disease provides strategies to prevent thioguanine-induced hepatic toxicity. Gut, 2013, 62, 594-605.	6.1	48
32	GS15, a 15-Kilodalton Golgi SolubleN-Ethylmaleimide-sensitive Factor Attachment Protein Receptor (SNARE) Homologous to rbet1. Journal of Biological Chemistry, 1997, 272, 20162-20166.	1.6	46
33	Serum hyaluronic acid with serum ferritin accurately predicts cirrhosis and reduces the need for liver biopsy in C282Y hemochromatosis. Hepatology, 2009, 49, 418-425.	3.6	46
34	In Situ Proximity Ligation Assays Indicate That Hemochromatosis Proteins Hfe and Transferrin Receptor 2 (Tfr2) Do Not Interact. PLoS ONE, 2013, 8, e77267.	1.1	42
35	Phenotypic analysis of hemochromatosis subtypes reveals variations in severity of iron overload and clinical disease. Blood, 2018, 132, 101-110.	0.6	41
36	lron storage disease in <scp>A</scp> siaâ€ <scp>P</scp> acific populations: The importance of nonâ€ <scp><i>HFE</i></scp> mutations. Journal of Gastroenterology and Hepatology (Australia), 2013, 28, 1087-1094.	1.4	39

#	Article	IF	CITATIONS
37	Therapeutic Advances in Regulating the Hepcidin/Ferroportin Axis. Pharmaceuticals, 2019, 12, 170.	1.7	39
38	Mammalian Bet3 functions as a cytosolic factor participating in transport from the ER to the Golgi apparatus. Journal of Cell Science, 2005, 118, 1209-1222.	1.2	37
39	Probiotics modify tight-junction proteins in an animal model of nonalcoholic fatty liver disease. Therapeutic Advances in Gastroenterology, 2016, 9, 463-472.	1.4	37
40	Hepatic iron concentration correlates with insulin sensitivity in nonalcoholic fatty liver disease. Hepatology Communications, 2018, 2, 644-653.	2.0	37
41	N-Ethylmaleimide-sensitive Factor (NSF) and α-Soluble NSF Attachment Proteins (SNAP) Mediate Dissociation of GS28-Syntaxin 5 Golgi SNAP Receptors (SNARE) Complex. Journal of Biological Chemistry, 1997, 272, 25441-25444.	1.6	36
42	Co-factors in liver disease: The role of HFE-related hereditary hemochromatosis and iron. Biochimica Et Biophysica Acta - General Subjects, 2009, 1790, 663-670.	1.1	36
43	Centrobin regulates the assembly of functional mitotic spindles. Oncogene, 2010, 29, 2649-2658.	2.6	35
44	G80S-linked ferroportin disease: Classical ferroportin disease in an Asian family and reclassification of the mutant as iron transport defective. Journal of Hepatology, 2011, 54, 538-544.	1.8	33
45	Altered lipid metabolism in Hfe-knockout mice promotes severe NAFLD and early fibrosis. American Journal of Physiology - Renal Physiology, 2011, 301, G865-G876.	1.6	31
46	Hematopoietic deletion of transferrin receptor 2 in mice leads to a block in erythroid differentiation during ironâ€deficient anemia. American Journal of Hematology, 2016, 91, 812-818.	2.0	31
47	A critical role for murine transferrin receptor 2 in erythropoiesis during iron restriction. British Journal of Haematology, 2015, 168, 891-901.	1.2	27
48	Identification of ferroportin disease in the Indian subcontinent. Gut, 2005, 54, 567-568.	6.1	26
49	A novel mutation in ferroportin implicated in iron overload. Journal of Hepatology, 2007, 46, 921-926.	1.8	26
50	Increased Iron Stores Correlate with Worse Disease Outcomes in a Mouse Model of Schistosomiasis Infection. PLoS ONE, 2010, 5, e9594.	1.1	26
51	Analysis of IL-22 contribution to hepcidin induction and hypoferremia during the response to LPS <i>in vivo</i> . International Immunology, 2015, 27, 281-287.	1.8	26
52	Prohepcidin localises to the Golgi compartment and secretory pathway in hepatocytes. Journal of Hepatology, 2005, 43, 720-728.	1.8	25
53	Blunted hepcidin response to inflammation in the absence of Hfe and transferrin receptor 2. Blood, 2011, 117, 2960-2966.	0.6	25
54	Cirrhosis in Hemochromatosis: Independent Risk Factors in 368 HFE p.C282Y Homozygotes. Annals of Hepatology, 2018, 17, 871-879.	0.6	25

#	Article	IF	CITATIONS
55	Endofin, a novel BMP-SMAD regulator of the iron-regulatory hormone, hepcidin. Scientific Reports, 2015, 5, 13986.	1.6	24
56	Next-generation sequencing: Application of a novel platform to analyze atypical iron disorders. Journal of Hepatology, 2015, 63, 1288-1293.	1.8	24
57	Ferroportin disease due to the A77D mutation in Australia. Gut, 2005, 54, 1048-1049.	6.1	23
58	Hepatic Iron Deposition Does Not Predict Extrahepatic Iron Loading in Mouse Models of Hereditary Hemochromatosis. American Journal of Pathology, 2012, 181, 1173-1179.	1.9	23
59	Hemochromatosis: Evaluation of the dietary iron model and regulation of hepcidin. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2018, 1864, 2550-2556.	1.8	22
60	Purification and partial characterisation of recombinant human hepcidin. Biochimie, 2006, 88, 31-37.	1.3	21
61	Iron loading and oxidative stress in the <i>Atm</i> ^{â^'/â^'} mouse liver. American Journal of Physiology - Renal Physiology, 2011, 300, G554-G560.	1.6	21
62	Defective trafficking and localization of mutated transferrin receptor 2: implications for type 3 hereditary hemochromatosis. American Journal of Physiology - Cell Physiology, 2008, 294, C383-C390.	2.1	20
63	Parenteral vs. oral iron: influence on hepcidin signaling pathways through analysis of <i>Hfe/Tfr2</i> -null mice. American Journal of Physiology - Renal Physiology, 2014, 306, G132-G139.	1.6	20
64	The relationship between systemic iron homeostasis and erythropoiesis. Bioscience Reports, 2017, 37, .	1.1	20
65	Cancer: The role of iron and ferroptosis. International Journal of Biochemistry and Cell Biology, 2021, 141, 106094.	1.2	19
66	Syntaxin 5 Is Required for Copper Homeostasis in Drosophila and Mammals. PLoS ONE, 2010, 5, e14303.	1.1	17
67	The dynamics of hepcidin-ferroportin internalization and consequences of a novel ferroportin disease mutation. American Journal of Hematology, 2017, 92, 1052-1061.	2.0	16
68	Molecular and Cellular Characterization of Transferrin Receptor 2. Cell Biochemistry and Biophysics, 2002, 36, 235-239.	0.9	15
69	Centrobin regulates centrosome function in interphase cells by limiting pericentriolar matrix recruitment. Cell Cycle, 2013, 12, 899-906.	1.3	15
70	Functional analysis of matriptase-2 mutations and domains: insights into the molecular basis of iron-refractory iron deficiency anemia. American Journal of Physiology - Cell Physiology, 2015, 308, C539-C547.	2.1	15
71	Normal systemic iron homeostasis in mice with macrophage-specific deletion of transferrin receptor 2. American Journal of Physiology - Renal Physiology, 2016, 310, G171-G180.	1.6	14
72	Ferroportin Expression in Adipocytes Does Not Contribute to Iron Homeostasis or Metabolic Responses to a High Calorie Diet. Cellular and Molecular Gastroenterology and Hepatology, 2018, 5, 319-331.	2.3	14

#	Article	IF	CITATIONS
73	Signaling pathways regulating hepcidin. Vitamins and Hormones, 2019, 110, 47-70.	0.7	14
74	Inactivation of the murineTransferrin Receptor 2 gene using the Cre recombinase:LoxP system. Genesis, 2004, 39, 38-41.	0.8	13
75	GNPAT p.D519G is independently associated with markedly increased iron stores in HFE p.C282Y homozygotes. Blood Cells, Molecules, and Diseases, 2017, 63, 15-20.	0.6	13
76	The potential prognostic utility of salivary galectin-3 concentrations in heart failure. Clinical Research in Cardiology, 2020, 109, 685-692.	1.5	13
77	Transthyretin-thyroid hormone internalization by trophoblasts. Placenta, 2013, 34, 716-718.	0.7	12
78	cDNA Characterization and Chromosomal Mapping of Human Golgi SNARE GS27 and GS28 to Chromosome 17. Genomics, 1999, 57, 285-288.	1.3	11
79	Iron Inhibits the SecretionÂof Apolipoprotein E in Cultured Human Adipocytes. Cellular and Molecular Gastroenterology and Hepatology, 2018, 6, 215-217.e8.	2.3	10
80	Iron depletion attenuates steatosis in a mouse model of non-alcoholic fatty liver disease: Role of iron-dependent pathways. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2021, 1867, 166142.	1.8	10
81	Combination curcumin and vitamin E treatment attenuates diet-induced steatosis in Hfe-/- mice. World Journal of Gastrointestinal Pathophysiology, 2017, 8, 67.	0.5	10
82	The functional roles of T-cadherin in mammalian biology. AIMS Molecular Science, 2017, 4, 62-81.	0.3	9
83	Evaluation of a bone morphogenetic protein 6 variant as a cause of iron loading. Human Genomics, 2018, 12, 23.	1.4	8
84	Reversal of end-stage heart failure in juvenile hemochromatosis with iron chelation therapy: a case report. Journal of Medical Case Reports, 2018, 12, 18.	0.4	8
85	Inconsistent hepatic antifibrotic effects with the iron chelator deferasirox. Journal of Gastroenterology and Hepatology (Australia), 2015, 30, 638-645.	1.4	7
86	Genetic Variants in the BMP6 Pro-Peptide May Not Cause Iron Loading and Should Be Interpreted With Caution. Gastroenterology, 2016, 151, 770-771.	0.6	7
87	Biology of the iron efflux transporter, ferroportin. Advances in Protein Chemistry and Structural Biology, 2021, 123, 1-16.	1.0	7
88	Identification of Ferritin Receptors: Their Role in Iron Homeostasis, Hepatic Injury, and Inflammation. Gastroenterology, 2009, 137, 1849-1851.	0.6	6
89	A Corn Oil–Based Diet Protects Against Combined Ethanol and Ironâ€Induced Liver Injury in a Mouse Model of Hemochromatosis. Alcoholism: Clinical and Experimental Research, 2013, 37, 1619-1631.	1.4	6
90	Gender biased neuroprotective effect of Transferrin Receptor 2 deletion in multiple models of Parkinson's disease. Cell Death and Differentiation, 2021, 28, 1720-1732.	5.0	6

#	Article	IF	CITATIONS
91	Clinical expression of C282Y homozygous HFE haemochromatosis at 14 years of age. Annals of Clinical Biochemistry, 2006, 43, 233-236.	0.8	5
92	Lack of efficacy of m <scp>TOR</scp> inhibitors and <scp>ACE</scp> pathway inhibitors as antifibrotic agents in evolving and established fibrosis in <i>Mdr2</i> ^{<i>â^²/â^²</i>} mice. Liver International, 2015, 35, 1451-1463.	1.9	5
93	Heterozygous <i>Hfe</i> gene deletion leads to impaired glucose homeostasis, but not liver injury in mice fed a high-calorie diet. Physiological Reports, 2016, 4, e12837.	0.7	5
94	Genetic Diagnosis in Hereditary Hemochromatosis: Discovering and Understanding the Biological Relevance of Variants. Clinical Chemistry, 2021, 67, 1324-1341.	1.5	5
95	HFE gene and hemochromatosis. Journal of Gastroenterology and Hepatology (Australia), 2004, 19, 712-712.	1.4	4
96	Hepcidin Regulation by HFE and TFR2: Is It Enough to Give a Hepatocyte a Complex?. Gastroenterology, 2009, 137, 1173-1175.	0.6	4
97	Reply. Hepatology, 2015, 62, 1918-1919.	3.6	4
98	Hepatocyte-specific deletion of peroxisomal protein PEX13 results in disrupted iron homeostasis. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2020, 1866, 165882.	1.8	4
99	The effect of the flavonol rutin on serum and liver iron content in a genetic mouse model of iron overload. Bioscience Reports, 2021, 41, .	1.1	4
100	Exome Sequencing Identifies Genes and Variant Alleles Associated With Severity Of Iron Overload In Hemochromatosis HFE C282Y Homozygotes. Blood, 2013, 122, 179-179.	0.6	4
101	How much iron is too much?. Expert Review of Gastroenterology and Hepatology, 2008, 2, 287-290.	1.4	3
102	In vitro identification and characterisation of iron chelating catechol-containing natural products and derivatives. BioMetals, 2021, 34, 855-866.	1.8	3
103	Evidence for dimerization of ferroportin in a human hepatic cell line using proximity ligation assays. Bioscience Reports, 2020, 40, .	1.1	3
104	The Control of Iron Homeostasis: microRNAS Join the Party. Gastroenterology, 2011, 141, 1520-1522.	0.6	2
105	Increased frequency of GNPAT p.D519G in compound HFE p.C282Y/p.H63D heterozygotes with elevated serum ferritin levels. Blood Cells, Molecules, and Diseases, 2020, 85, 102463.	0.6	2
106	Exome Sequencing Identifies a GNPAT Variant Associated with Severe Iron Overload in HFE C282Y Homozygous Men with Extreme Phenotypes; Possible Role in Regulation of Hepcidin Expression. Blood, 2014, 124, 745-745.	0.6	2
107	Transforming growth factor-Î ² and toll-like receptor-4 polymorphisms are not associated with fibrosis in haemochromatosis. World Journal of Gastroenterology, 2013, 19, 9366.	1.4	2
108	Juvenile iron overload—Advances, but no answers. Journal of Pediatrics, 2008, 153, 588.	0.9	1

#	Article	IF	CITATIONS
109	Transferrin Receptor 1: A Ferritin Receptor as Well?. Gastroenterology, 2010, 139, 1052-1053.	0.6	1
110	Linking hypoxia and iron homeostasis: a â€~plate' full of factors. Gut, 2014, 63, 1840-1842.	6.1	1
111	Pocket-sized iron regulators: one size fits all?. Blood, 2016, 128, 153-154.	0.6	1
112	Reply. Hepatology, 2016, 63, 2056-2057.	3.6	1
113	Reply:. Hepatology, 2017, 65, 1072-1073.	3.6	1
114	Non-HFE Hemochromatosis. , 2012, , 399-416.		1
115	An Essential Role For Transferrin Receptor 2 In Erythropoiesis During Iron Restriction. Blood, 2013, 122, 429-429.	0.6	1
116	Ironing out doxorubicin-related cardiotoxicity. Blood, 2003, 102, 2317-2318.	0.6	0
117	Regulation of Iron Homeostasis: Is It All in the HBD?. Gastroenterology, 2009, 136, 1449-1451.	0.6	0
118	Iron Predicts Tolerance in Liver Transplantation. Gastroenterology, 2012, 143, 862-865.	0.6	0
119	Reply. Hepatology, 2016, 63, 2058-2060.	3.6	0
120	Ironing out Steatohepatitis. Annals of Hepatology, 2017, 16, 8-9.	0.6	0
121	GNPAT p.D519G is Independently Associated with Markedly Increased Iron Stores in HFE p.C282Y Homozygotes. Blood, 2016, 128, 3617-3617.	0.6	0
122	Increased Allele Frequency of GNPAT p.D519G in Compound HFE p.C282Y/p.H63D Heterozygotes with Elevated Serum Ferritin Levels. Blood, 2019, 134, 4807-4807.	0.6	0
123	Dysregulated hepcidin response to dietary iron in male mice with reduced Gnpat expression. Bioscience Reports, 2020, 40, .	1.1	ο