Ron R Walcott

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4589853/publications.pdf

Version: 2024-02-01

70 papers

2,482 citations

186209
28
h-index

214721 47 g-index

73 all docs

73 docs citations

73 times ranked 1250 citing authors

#	Article	IF	CITATIONS
1	Fermentation: An Unreliable Seed Treatment for Bacterial Fruit Blotch of Watermelon. Plant Disease, 2021, 105, 1026-1033.	0.7	2
2	Patterns of Seed-to-Seedling Transmission of <i>Xanthomonas citri</i> pv. <i>malvacearum</i> , the Causal Agent of Cotton Bacterial Blight. Phytopathology, 2021, 111, 2176-2184.	1.1	4
3	Prevalence of <i>Acidovorax citrulli</i> in Commercial Cucurbit Seedlots During 2010–2018 in China. Plant Disease, 2020, 104, 255-259.	0.7	9
4	Show me your secret(ed) weapons: a multifaceted approach reveals a wide arsenal of type Illâ€secreted effectors in the cucurbit pathogenic bacterium ⟨i⟩Acidovorax citrulli⟨ i⟩ and novel effectors in the ⟨i⟩Acidovorax⟨ i⟩ genus. Molecular Plant Pathology, 2020, 21, 17-37.	2.0	42
5	Acidovorax citrulli Type III Effector AopP Suppresses Plant Immunity by Targeting the Watermelon Transcription Factor WRKY6. Frontiers in Plant Science, 2020, 11, 579218.	1.7	15
6	Acidovorax citrulli is sensitive to elevated temperatures during early stages of watermelon seed germination. Seed Science and Technology, 2020, 48, 11-20.	0.6	2
7	Identification and Functional Analysis of AopN, an Acidovorax Citrulli Effector that Induces Programmed Cell Death in Plants. International Journal of Molecular Sciences, 2020, 21, 6050.	1.8	18
8	Genetically Distinct <i>Acidovorax citrulli</i> Strains Display Cucurbit Fruit Preference Under Field Conditions. Phytopathology, 2020, 110, 973-980.	1.1	10
9	Complete Assembly of the Genome of an Acidovorax citrulli Strain Reveals a Naturally Occurring Plasmid in This Species. Frontiers in Microbiology, 2019, 10, 1400.	1.5	11
10	Evaluation of suitable reference genes for normalization of quantitative reverse transcription PCR analyses in <i>Clavibacter michiganensis</i> . MicrobiologyOpen, 2019, 8, e928.	1.2	11
11	Ferric Uptake Regulator (FurA) is Required for <i>Acidovorax citrulli</i> Virulence on Watermelon. Phytopathology, 2019, 109, 1997-2008.	1.1	24
12	Induction and Resuscitation of the Viable but Non-culturable (VBNC) State in Acidovorax citrulli, the Causal Agent of Bacterial Fruit Blotch of Cucurbitaceous Crops. Frontiers in Microbiology, 2019, 10, 1081.	1.5	26
13	<i>Nicotiana </i> species as surrogate host for studying the pathogenicity of <i>Acidovorax citrulli</i> , the causal agent of bacterial fruit blotch of cucurbits. Molecular Plant Pathology, 2019, 20, 800-814.	2.0	24
14	Development of a multiplex PCR assay based on the pilA gene sequences to detect different types of Acidovorax citrulli. Journal of Microbiological Methods, 2019, 158, 93-98.	0.7	10
15	Transmission of human enteric pathogens from artificially-inoculated flowers to vegetable sprouts/seedlings developed via contaminated seeds. Food Control, 2019, 99, 21-27.	2.8	9
16	Factors influencing the detection of (i) Acidovorax citrulli (i) in naturally contaminated cucurbitaceous seeds by PCR-based assays. Seed Science and Technology, 2018, 46, 93-106.	0.6	9
17	Involvement of hrpX and hrpG in the Virulence of Acidovorax citrulli Strain Aac5, Causal Agent of Bacterial Fruit Blotch in Cucurbits. Frontiers in Microbiology, 2018, 9, 507.	1.5	39
18	Further Evidence of Cucurbit Host Specificity among <i>Acidovorax citrulli</i> Groups Based on a Detached Melon Fruit Pathogenicity Assay. Phytopathology, 2017, 107, 1305-1311.	1.1	27

#	Article	IF	Citations
19	Evidence for a Novel Phylotype of Pseudomonas syringae Causing Bacterial Leaf Blight of Cantaloupe in China. Plant Disease, 2017, 101, 1746-1752.	0.7	5
20	Visual detection of Didymella bryoniae in cucurbit seeds using a loop-mediated isothermal amplification assay. European Journal of Plant Pathology, 2017, 147, 255-263.	0.8	8
21	Further Characterization of Genetically Distinct Groups of <i>Acidovorax citrulli</i> Strains. Phytopathology, 2017, 107, 29-35.	1.1	33
22	Insights from the Genome Sequence of Acidovorax citrulli M6, a Group I Strain of the Causal Agent of Bacterial Fruit Blotch of Cucurbits. Frontiers in Microbiology, 2016, 7, 430.	1.5	19
23	Strains of the Group I Lineage of <i>Acidovorax citrulli,</i> the Causal Agent of Bacterial Fruit Blotch of Cucurbitaceous Crops, are Predominant in Brazil. Phytopathology, 2016, 106, 1486-1494.	1.1	22
24	Embryo Localization Enhances the Survival of <i>Acidovorax citrulli</i> in Watermelon Seeds. Phytopathology, 2016, 106, 330-338.	1.1	12
25	Induction of the viable but nonculturable state in <i>Clavibacter michiganensis</i> subsp. <i>michiganensis</i> and <i>in planta</i> resuscitation of the cells on tomato seedlings. Plant Pathology, 2016, 65, 826-836.	1.2	33
26	Pathways of bacterial invasion and watermelon seed infection by <i>Acidovorax citrulli</i> Pathology, 2015, 64, 537-544.	1.2	9
27	The type <scp>VI</scp> protein secretion system contributes to biofilm formation and seedâ€toâ€seedling transmission of <i><scp>A</scp>cidovorax citrulli</i> on melon. Molecular Plant Pathology, 2015, 16, 38-47.	2.0	74
28	Simultaneous Detection of <i>Xanthomonas oryzae</i> pv. <i>oryzae</i> and <i>X. oryzae</i> pv. <i>oryzicola</i> in Rice Seed Using a Padlock Probe-Based Assay. Phytopathology, 2014, 104, 1130-1137.	1,1	24
29	Evidence for fungicide-resistant seed-borne inoculum for gummy stem blight of watermelon. Seed Science and Technology, 2014, 42, 92-96.	0.6	5
30	Comparative Analysis of Type III Secreted Effector Genes Reflects Divergence of <i>Acidovorax citrulli</i> Strains into Three Distinct Lineages. Phytopathology, 2014, 104, 1152-1162.	1,1	53
31	Reliable and Sensitive Detection of <i>Acidovorax citrulli</i> in Cucurbit Seed Using a Padlock-Probe-Based Assay. Plant Disease, 2013, 97, 961-966.	0.7	11
32	Distribution of phytopathogenic bacteria in infested seeds. Seed Science and Technology, 2013, 41, 383-397.	0.6	10
33	Detection of <i>Puccinia pelargoniiâ€zonalis</i> i>â€infected Geranium Tissues and Urediniospores. Journal of Phytopathology, 2013, 161, 341-347.	0.5	3
34	Quorum Sensing Contributes to Seedâ€toâ€Seedling Transmission of <i><scp>A</scp>cidovorax citrulli</i> i> on Watermelon. Journal of Phytopathology, 2013, 161, 562-573.	0.5	24
35	Advances in detection of Acidovorax citrulli, the causal agent of bacterial fruit blotch of cucurbits. Seed Science and Technology, 2013, 41, 1-15.	0.6	18
36	<i>Acidovorax citrulli</i> Seed Inoculum Load Affects Seedling Transmission and Spread of Bacterial Fruit Blotch of Watermelon Under Greenhouse Conditions. Plant Disease, 2012, 96, 705-711.	0.7	31

#	Article	IF	CITATIONS
37	Location of Acidovorax citrulli in watermelon seeds affects efficiency of pathogen detection by seed health testing. Seed Science and Technology, 2012, 40, 309-319.	0.6	3
38	Location of <i>Acidovorax citrulli</i> in Infested Watermelon Seeds Is Influenced by the Pathway of Bacterial Invasion. Phytopathology, 2012, 102, 461-468.	1.1	42
39	<i>Acidovorax citrulli</i> : generating basic and applied knowledge to tackle a global threat to the cucurbit industry. Molecular Plant Pathology, 2012, 13, 805-815.	2.0	147
40	Progress Towards a Realâ€time PCR Assay for the Simultaneous Detection of <i>Clavibacter michiganensis</i> subsp. <i>michiganensis</i> and <i>Pepino mosaic virus</i> in Tomato Seed. Journal of Phytopathology, 2012, 160, 353-363.	0.5	9
41	Development of a Real-time RT-PCR Assay for Squash Mosaic Virus Useful for Broad Spectrum Detection of Various Serotypes and its Incorporation into a Multiplex Seed Health Assay. Journal of Phytopathology, 2011, 159, 649-656.	0.5	17
42	The acyl-homoserine lactone (AHL)-type quorum sensing system affects growth rate, swimming motility and virulence in Acidovorax avenae subsp. citrulli. World Journal of Microbiology and Biotechnology, 2011, 27, 1155-1166.	1.7	28
43	Efficacy of a Nonpathogenic <i>Acidovorax citrulli</i> Strain as a Biocontrol Seed Treatment for Bacterial Fruit Blotch of Cucurbits. Plant Disease, 2011, 95, 697-704.	0.7	75
44	An improved real-time PCR system for broad-spectrum detection of Didymella bryoniae, the causal agent of gummy stem blight of cucurbits. Seed Science and Technology, 2010, 38, 692-703.	0.6	30
45	Simultaneous Detection of <i>Acidovorax avenae</i> subsp. <i>citrulli</i> and <i>Didymella bryoniae</i> in Cucurbit Seedlots Using Magnetic Capture Hybridization and Real-Time Polymerase Chain Reaction. Phytopathology, 2009, 99, 666-678.	1.1	68
46	Development of an Improved Isolation Approach and Simple Sequence Repeat Markers To Characterize <i>Phytophthora capsici</i> Populations in Irrigation Ponds in Southern Georgia. Applied and Environmental Microbiology, 2009, 75, 5467-5473.	1.4	46
47	New subspeciesâ€specific polymerase chain reactionâ€based assay for the detection of <i>Acidovorax avenae</i> subsp. <i>citrulli</i> Plant Pathology, 2008, 57, 754-763.	1.2	47
48	Integrated Pest Management Of Bacterial Fruit Blotch Of Cucurbits., 2008,, 191-209.		18
49	A Quantitative Real-time Polymerase Chain Reaction Assay for Botrytis aclada in Onion Bulb Tissue. Hortscience: A Publication of the American Society for Hortcultural Science, 2008, 43, 408-413.	0.5	7
50	The Epidemiology and Management of Seedborne Bacterial Diseases. Annual Review of Phytopathology, 2007, 45, 371-397.	3.5	122
51	Colonization of Female Watermelon Blossoms by Acidovorax avenae ssp. citrulli and the Relationship between Blossom Inoculum Dosage and Seed Infestation. Journal of Phytopathology, 2007, 155, 114-121.	0.5	47
52	Progress towards a commercial PCR-based seed assay for Acidovorax avenae subsp. citrulli. Seed Science and Technology, 2006, 34, 101-116.	0.6	30
53	Biological Control to Protect Watermelon Blossoms and Seed from Infection by Acidovorax avenae subsp. citrulli. Phytopathology, 2005, 95, 413-419.	1.1	51
54	Detection of Botrytis aclada in onion seed using magnetic capture hybridization and the polymerase chain reaction. Seed Science and Technology, 2004, 32, 425-438.	0.6	23

#	Article	IF	CITATIONS
55	Differences in Pathogenicity between two Genetically Distinct Groups of Acidovorax avenae subsp. citrulli on Cucurbit Hosts. Journal of Phytopathology, 2004, 152, 277-285.	0.5	111
56	Effects of Mulch and Irrigation System on Sweet Onion: I. Bolting, Plant Growth, and Bulb Yield and Quality. Journal of the American Society for Horticultural Science, 2004, 129, 218-224.	0.5	18
57	Effects of Mulch and Irrigation System on Sweet Onion: II. The Epidemiology of Center Rot. Journal of the American Society for Horticultural Science, 2004, 129, 225-230.	0.5	11
58	Fusarium verticillioides induction of maize seed rot and its control. Canadian Journal of Botany, 2003, 81, 422-428.	1.2	31
59	Transmission of Pantoea ananatis, Causal Agent of Center Rot of Onion, by Tobacco Thrips, Frankliniella fusca. Plant Disease, 2003, 87, 675-678.	0.7	73
60	Role of Blossoms in Watermelon Seed Infestation by Acidovorax avenae subsp. citrulli. Phytopathology, 2003, 93, 528-534.	1.1	83
61	Recent Trends in Microbiological Safety of Fruits and Vegetables. Plant Health Progress, 2003, 4, .	0.8	145
62	Detection of Seedborne Pathogens. HortTechnology, 2003, 13, 40-47.	0.5	49
63	Natural Infestation of Onion Seed by Pantoea ananatis, Causal Agent of Center Rot. Plant Disease, 2002, 86, 106-111.	0.7	89
64	Recovery of Pantoea ananatis, causal agent of center rot of onion, from weeds and crops in Georgia, USA. Crop Protection, 2002, 21, 983-989.	1.0	86
65	Occurrence of Bacterial Stripe of Pearl Millet in Georgia. Plant Disease, 2002, 86, 326-326.	0.7	3
66	Investigating Intraspecific Variation of Acidovorax avenae subsp. citrulli Using DNA Fingerprinting and Whole Cell Fatty Acid Analysis. Phytopathology, 2000, 90, 191-196.	1.1	92
67	Detection of Acidovorax avenae subsp. citrulli in Watermelon Seed Using Immunomagnetic Separation and the Polymerase Chain Reaction. Plant Disease, 2000, 84, 470-474.	0.7	120
68	Natural Outbreak of a Bacterial Fruit Rot of Cantaloupe in Georgia Caused by Acidovorax avenae subsp. citrulli. Plant Disease, 2000, 84, 372-372.	0.7	13
69	First Report of a Fruit Rot of Pumpkin Caused by Acidivorax avenae subsp. citrulli in Georgia. Plant Disease, 1999, 83, 199-199.	0.7	46
70	Detection of Asymptomatic Fungal Infections of Soybean Seeds by Ultrasound Analysis. Plant Disease, 1998, 82, 584-589.	0.7	15