George G Malliaras

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/4589485/george-g-malliaras-publications-by-year.pdf

Version: 2024-04-09

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

330
papers

28,410
ph-index

92
h-index

348
ext. papers

28,410
papers

10
7.38
L-index

#	Paper	IF	Citations
330	Semiconducting Polymers for Neural Applications Chemical Reviews, 2022,	68.1	14
329	Sensitive and robust chemical detection using an olfactory brain-computer interface. <i>Biosensors and Bioelectronics</i> , 2022 , 195, 113664	11.8	1
328	Organic Bioelectronics 2022 , 1-26		
327	Prevention of the foreign body response to implantable medical devices by inflammasome inhibition <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2022 , 119, e2115857119	11.5	1
326	Adhesive cutaneous conducting polymer electrodes. <i>Applied Physics Reviews</i> , 2022 , 9, 021401	17.3	O
325	Highly stable PEDOT:PSS electrochemical transistors. <i>Applied Physics Letters</i> , 2022 , 120, 073302	3.4	3
324	Biostack: Nontoxic Metabolite Detection from Live Tissue. <i>Advanced Science</i> , 2021 , 9, e2101711	13.6	3
323	Electrolyte-gated transistors for enhanced performance bioelectronics <i>Nature Reviews Methods Primers</i> , 2021 , 1,		42
322	3D printed biomimetic cochleae and machine learning co-modelling provides clinical informatics for cochlear implant patients. <i>Nature Communications</i> , 2021 , 12, 6260	17.4	2
321	Foreign Body Reaction to Implanted Biomaterials and Its Impact in Nerve Neuroprosthetics. <i>Frontiers in Bioengineering and Biotechnology</i> , 2021 , 9, 622524	5.8	25
320	Reducing Passive Drug Diffusion from Electrophoretic Drug Delivery Devices through Co-Ion Engineering. <i>Advanced Science</i> , 2021 , 8, 2003995	13.6	1
319	Microelectrode Arrays for Simultaneous Electrophysiology and Advanced Optical Microscopy. <i>Advanced Science</i> , 2021 , 8, 2004434	13.6	6
318	Achieving long-term stability of thin-film electrodes for neurostimulation. <i>Acta Biomaterialia</i> , 2021 , 139, 65-65	10.8	4
317	Conducting Polymer-Ionic Liquid Electrode Arrays for High-Density Surface Electromyography. <i>Advanced Healthcare Materials</i> , 2021 , 10, e2100374	10.1	12
316	Electronics with shape actuation for minimally invasive spinal cord stimulation. <i>Science Advances</i> , 2021 , 7,	14.3	5
315	Electrotherapies for Glioblastoma. <i>Advanced Science</i> , 2021 , 8, e2100978	13.6	5
314	Electrochemical detection of redox molecules secreted by Pseudomonas aeruginosa - Part 1: Electrochemical signatures of different strains. <i>Bioelectrochemistry</i> , 2021 , 140, 107747	5.6	2

313	Integration of Organic Electrochemical Transistors with Implantable Probes. <i>Advanced Materials Technologies</i> , 2021 , 6, 2100763	6.8	3
312	Lithography and electrodes 2021 , 277-307		2
311	An Instrumented Cochlea Model for the Evaluation of Cochlear Implant Electrical Stimulus Spread. <i>IEEE Transactions on Biomedical Engineering</i> , 2021 , 68, 2281-2288	5	1
310	Materials and Device Considerations in Electrophoretic Drug Delivery Devices. <i>Scientific Reports</i> , 2020 , 10, 7185	4.9	5
309	Controlling the Neuromorphic Behavior of Organic Electrochemical Transistors by Blending Mixed and Ion Conductors. <i>ACS Applied Electronic Materials</i> , 2020 , 2, 2224-2228	4	16
308	Tailoring PEDOT properties for applications in bioelectronics. <i>Materials Science and Engineering Reports</i> , 2020 , 140, 100546	30.9	71
307	Inflight fiber printing toward array and 3D optoelectronic and sensing architectures. <i>Science Advances</i> , 2020 , 6,	14.3	29
306	Stability of PEDOT:PSS-Coated Gold Electrodes in Cell Culture Conditions. <i>Advanced Materials Technologies</i> , 2020 , 5, 1900662	6.8	39
305	Hybrid 3D/Inkjet-Printed Organic Neuromorphic Transistors. <i>Advanced Materials Technologies</i> , 2020 , 2000798	6.8	7
304	Recent advances in neural interfaces-Materials chemistry to clinical translation. <i>MRS Bulletin</i> , 2020 , 45, 655-668	3.2	13
303	Organic neuromorphic devices: Past, present, and future challenges. MRS Bulletin, 2020, 45, 619-630	3.2	30
302	Microfabricated Ion-Selective Transistors with Fast and Super-Nernstian Response. <i>Advanced Materials</i> , 2020 , 32, e2004790	24	22
301	Electrochemical impedance spectroscopy of human cochleas for modeling cochlear implant electrical stimulus spread. <i>APL Materials</i> , 2020 , 8, 091102	5.7	3
300	Effect of channel thickness on noise in organic electrochemical transistors. <i>Applied Physics Letters</i> , 2020 , 117, 073302	3.4	9
299	When Bio Meets Technology: Biohybrid Neural Interfaces. <i>Advanced Materials</i> , 2020 , 32, e1903182	24	38
298	Monitoring fluorescent calcium signals in neural cells with organic photodetectors. <i>Journal of Materials Chemistry C</i> , 2019 , 7, 9049-9056	7.1	6
297	Electrophoretic Delivery of Eleminobutyric Acid (GABA) into Epileptic Focus Prevents Seizures in Mice. <i>Journal of Visualized Experiments</i> , 2019 ,	1.6	2
296	Functional Connectivity of Organic Neuromorphic Devices by Global Voltage Oscillations. <i>Advanced Intelligent Systems</i> , 2019 , 1, 1900013	6	19

295	Epidermal electrophysiology at scale. <i>Nature Biomedical Engineering</i> , 2019 , 3, 165-166	19	1
294	Conjugated Polymers for Assessing and Controlling Biological Functions. <i>Advanced Materials</i> , 2019 , 31, e1806712	24	98
293	Developing Next-generation Brain Sensing Technologies - A Review. <i>IEEE Sensors Journal</i> , 2019 , 19,	4	9
292	Ionic Hydrogel for Accelerated Dopamine Delivery via Retrodialysis. <i>Chemistry of Materials</i> , 2019 , 31, 7080-7084	9.6	12
291	Impact of contact overlap on transconductance and noise in organic electrochemical transistors. <i>Flexible and Printed Electronics</i> , 2019 , 4, 044003	3.1	26
29 0	How conducting polymer electrodes operate. <i>Science</i> , 2019 , 364, 233-234	33.3	81
289	Conductive Poly(3,4-Ethylenedioxythiophene) (PEDOT)-Based Polymers and Their Applications in Bioelectronics 2019 , 191-218		12
288	Electrically controlled cellular migration on a periodically micropatterned PEDOT:PSS conducting polymer platform. <i>Journal of Applied Polymer Science</i> , 2019 , 136, 47029	2.9	8
287	An Electrocorticography Device with an Integrated Microfluidic Ion Pump for Simultaneous Neural Recording and Electrophoretic Drug Delivery In Vivo. <i>Advanced Biology</i> , 2019 , 3, e1800270	3.5	28
286	Redox-Stability of Alkoxy-BDT Copolymers and their Use for Organic Bioelectronic Devices. <i>Advanced Functional Materials</i> , 2018 , 28, 1706325	15.6	58
285	Long-term ageing of PEDOT:PSS: wettability Study. Synthetic Metals, 2018, 238, 14-21	3.6	16
284	Facile Nanopatterning of PEDOT:PSS Thin Films. Advanced Materials Technologies, 2018, 3, 1700344	6.8	8
283	Monitoring Intrinsic Optical Signals in Brain Tissue with Organic Photodetectors. <i>Advanced Materials Technologies</i> , 2018 , 3, 1700333	6.8	19
282	A Na conducting hydrogel for protection of organic electrochemical transistors. <i>Journal of Materials Chemistry B</i> , 2018 , 6, 2901-2906	7.3	11
281	The Role of the Side Chain on the Performance of N-type Conjugated Polymers in Aqueous Electrolytes. <i>Chemistry of Materials</i> , 2018 , 30, 2945-2953	9.6	124
280	Emulating homeoplasticity phenomena with organic electrochemical devices. <i>MRS Communications</i> , 2018 , 8, 493-497	2.7	15
279	DVS-Crosslinked PEDOT:PSS Free-Standing and Textile Electrodes toward Wearable Health Monitoring. <i>Advanced Materials Technologies</i> , 2018 , 3, 1700322	6.8	51
278	Organic electrochemical transistors. <i>Nature Reviews Materials</i> , 2018 , 3,	73.3	716

277	High-Performance Vertical Organic Electrochemical Transistors. <i>Advanced Materials</i> , 2018 , 30, 1705031	24	64
276	Development and Translation of PEDOT:PSS Microelectrodes for Intraoperative Monitoring. <i>Advanced Functional Materials</i> , 2018 , 28, 1700232	15.6	66
275	Conducting Polymer Scaffolds Based on Poly(3,4-ethylenedioxythiophene) and Xanthan Gum for Live-Cell Monitoring. <i>ACS Omega</i> , 2018 , 3, 7424-7431	3.9	42
274	Organic electronics for neuromorphic computing. <i>Nature Electronics</i> , 2018 , 1, 386-397	28.4	393
273	Fully printed all-polymer tattoo/textile electronics for electromyography. <i>Flexible and Printed Electronics</i> , 2018 , 3, 034004	3.1	35
272	Conjugated Polymers in Bioelectronics. Accounts of Chemical Research, 2018, 51, 1368-1376	24.3	235
271	Multimodal Characterization of Neural Networks Using Highly Transparent Electrode Arrays. <i>ENeuro</i> , 2018 , 5,	3.9	9
270	Smaller Counter Cation for Higher Transconductance in Anionic Conjugated Polyelectrolytes. <i>Macromolecular Chemistry and Physics</i> , 2018 , 219, 1700374	2.6	17
269	Light sensors and opto-logic gates based on organic electrochemical transistors. <i>Materials Horizons</i> , 2018 , 5, 93-98	14.4	15
268	Neurospheres on Patterned PEDOT:PSS Microelectrode Arrays Enhance Electrophysiology Recordings. <i>Advanced Biology</i> , 2018 , 2, 1700164	3.5	18
267	PEDOT:PSS electrodes for acute experimental evaluation of vagus nerve stimulation on rodents. Annual International Conference of the IEEE Engineering in Medicine and Biology Society IEEE Engineering in Medicine and Biology Society Annual International Conference, 2018, 2018, 4760-4763	0.9	1
266	Biodegradable Polycarbonate Iongels for Electrophysiology Measurements. <i>Polymers</i> , 2018 , 10,	4.5	7
265	Numerical Modeling of an Organic Electrochemical Transistor. <i>Biosensors</i> , 2018 , 8,	5.9	11
264	Nonthrombogenic, stretchable, active multielectrode array for electroanatomical mapping. <i>Science Advances</i> , 2018 , 4, eaau2426	14.3	89
263	A bilayered PVA/PLGA-bioresorbable shuttle to improve the implantation of flexible neural probes. Journal of Neural Engineering, 2018, 15, 065001	5	31
262	Electrophoretic drug delivery for seizure control. <i>Science Advances</i> , 2018 , 4, eaau1291	14.3	76
261	Inkjet-Printed PEDOT:PSS Electrodes on Paper for Electrocardiography. <i>Advanced Healthcare Materials</i> , 2017 , 6, 1601167	10.1	66
260	Lactate Detection in Tumor Cell Cultures Using Organic Transistor Circuits. <i>Advanced Materials</i> , 2017 , 29, 1605744	24	94

259	Tailoring the Electrochemical and Mechanical Properties of PEDOT:PSS Films for Bioelectronics. <i>Macromolecular Materials and Engineering</i> , 2017 , 302, 1600497	3.9	90
258	Fully Printed Electrodes on Stretchable Textiles for Long-Term Electrophysiology. <i>Advanced Materials Technologies</i> , 2017 , 2, 1600251	6.8	67
257	Polyelectrolyte Layer-by-Layer Assembly on Organic Electrochemical Transistors. <i>ACS Applied Materials & District Amp; Interfaces</i> , 2017 , 9, 10427-10434	9.5	32
256	Electrochemical Characterizations of four Main Redoxthetabolites of Pseudomonas Aeruginosa. <i>Electroanalysis</i> , 2017 , 29, 1332-1340	3	12
255	A Microfluidic Ion Pump for In Vivo Drug Delivery. Advanced Materials, 2017, 29, 1701217	24	72
254	Low-Temperature Cross-Linking of PEDOT:PSS Films Using Divinylsulfone. <i>ACS Applied Materials</i> & Samp; Interfaces, 2017 , 9, 18254-18262	9.5	61
253	Impedance Spectroscopy of Spin-Cast and Electrochemically Deposited PEDOT:PSS Films on Microfabricated Electrodes with Various Areas. <i>ChemElectroChem</i> , 2017 , 4, 2321-2327	4.3	52
252	Neuromorphic device architectures with global connectivity through electrolyte gating. <i>Nature Communications</i> , 2017 , 8, 15448	17.4	182
251	PEDOT:PSS microelectrode arrays for hippocampal cell culture electrophysiological recordings. <i>MRS Communications</i> , 2017 , 7, 259-265	2.7	30
250	Next-generation probes, particles, and proteins for neural interfacing. <i>Science Advances</i> , 2017 , 3, e1601	649 3	252
249	Conducting Polymer Iongels Based on PEDOT and Guar Gum. ACS Macro Letters, 2017, 6, 473-478	6.6	33
248	Electrowetting on Immersed Conducting Hydrogel. <i>Journal of Physical Chemistry B</i> , 2017 , 121, 9947-995	563.4	5
247	Transparent, conformable, active multielectrode array using organic electrochemical transistors. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 10554-1055	9 ^{11.5}	133
246	Fabrication Approaches for Conducting Polymer Devices 2017 , 55-89		2
245	Highly porous scaffolds of PEDOT:PSS for bone tissue engineering. <i>Acta Biomaterialia</i> , 2017 , 62, 91-101	10.8	119
244	Influence of disorder on transfer characteristics of organic electrochemical transistors. <i>Applied Physics Letters</i> , 2017 , 111, 023301	3.4	49
243	Organic transistor platform with integrated microfluidics for in-line multi-parametric cell monitoring. <i>Microsystems and Nanoengineering</i> , 2017 , 3, 17028	7.7	63
242	Benchmarking organic mixed conductors for transistors. <i>Nature Communications</i> , 2017 , 8, 1767	17.4	223

(2016-2017)

241	Referenceless pH Sensor using Organic Electrochemical Transistors. <i>Advanced Materials Technologies</i> , 2017 , 2, 1600141	6.8	48
240	Voltage Amplifier Based on Organic Electrochemical Transistor. <i>Advanced Science</i> , 2017 , 4, 1600247	13.6	66
239	2017,		1
238	Simultaneous monitoring of single cell and of micro-organ activity by PEDOT:PSS covered multi-electrode arrays. <i>Materials Science and Engineering C</i> , 2017 , 81, 84-89	8.3	24
237	Bioelectronic neural pixel: Chemical stimulation and electrical sensing at the same site. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2016 , 113, 9440-5	11.5	82
236	Autoclave Sterilization of PEDOT:PSS Electrophysiology Devices. <i>Advanced Healthcare Materials</i> , 2016 , 5, 3094-3098	10.1	37
235	Integration of Organic Electrochemical and Field-Effect Transistors for Ultraflexible, High Temporal Resolution Electrophysiology Arrays. <i>Advanced Materials</i> , 2016 , 28, 9722-9728	24	101
234	Microsecond Response in Organic Electrochemical Transistors: Exceeding the Ionic Speed Limit. <i>Advanced Materials</i> , 2016 , 28, 8398-8404	24	38
233	Electroconductive Hydrogel Based on Functional Poly(Ethylenedioxy Thiophene). <i>Chemistry of Materials</i> , 2016 , 28, 6080-6088	9.6	81
232	Molecular Design of Semiconducting Polymers for High-Performance Organic Electrochemical Transistors. <i>Journal of the American Chemical Society</i> , 2016 , 138, 10252-9	16.4	189
231	Organic Transistor Arrays Integrated with Finger-Powered Microfluidics for Multianalyte Saliva Testing. <i>Advanced Healthcare Materials</i> , 2016 , 5, 2295-302	10.1	117
230	N-type organic electrochemical transistors with stability in water. <i>Nature Communications</i> , 2016 , 7, 1306	5 6 7.4	170
229	Orientation selectivity in a multi-gated organic electrochemical transistor. <i>Scientific Reports</i> , 2016 , 6, 27007	4.9	63
228	A Disposable paper breathalyzer with an alcohol sensing organic electrochemical transistor. <i>Scientific Reports</i> , 2016 , 6, 27582	4.9	91
227	Structural control of mixed ionic and electronic transport in conducting polymers. <i>Nature Communications</i> , 2016 , 7, 11287	17.4	452
226	Nanostructured conducting polymers for stiffness controlled cell adhesion. <i>Nanotechnology</i> , 2016 , 27, 074001	3.4	11
225	Optical study of electrochromic moving fronts for the investigation of ion transport in conducting polymers. <i>Journal of Materials Chemistry C</i> , 2016 , 4, 3942-3947	7.1	27
224	Understanding volumetric capacitance in conducting polymers. <i>Journal of Polymer Science, Part B:</i> Polymer Physics, 2016 , 54, 1433-1436	2.6	128

223	Organic electrochemical transistors based on PEDOT with different anionic polyelectrolyte dopants. <i>Journal of Polymer Science, Part B: Polymer Physics</i> , 2016 , 54, 147-151	2.6	52
222	Wearable Keyboard Using Conducting Polymer Electrodes on Textiles. <i>Advanced Materials</i> , 2016 , 28, 4485-8	24	130
221	Interfacing Electronic and Ionic Charge Transport in Bioelectronics. ChemElectroChem, 2016, 3, 686-688	4.3	49
220	Orientation selectivity with organic photodetectors and an organic electrochemical transistor. <i>AIP Advances</i> , 2016 , 6, 111307	1.5	28
219	Preface to Special Topic: Adaptive Materials, Devices and Systems towards Unconventional Computing, Sensing, Bioelectronics and Robotics. <i>AIP Advances</i> , 2016 , 6, 111101	1.5	
218	The rise of plastic bioelectronics. <i>Nature</i> , 2016 , 540, 379-385	50.4	925
217	Sodium and Potassium Ion Selective Conjugated Polymers for Optical Ion Detection in Solution and Solid State. <i>Advanced Functional Materials</i> , 2016 , 26, 514-523	15.6	41
216	Wettability of PEDOT:PSS films. <i>Soft Matter</i> , 2016 , 12, 5146-53	3.6	37
215	Controlling the mode of operation of organic transistors through side-chain engineering. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 12017-12027	2 ^{11.5}	251
214	ORGANIC BIOELECTRONICS FOR INTERFACING WITH THE BRAIN. <i>Materials and Energy</i> , 2016 , 345-368		1
213	3D Conducting Polymer Platforms for Electrical Control of Protein Conformation and Cellular Functions. <i>Journal of Materials Chemistry B</i> , 2015 , 3, 5040-5048	7.3	96
212	Controlling epileptiform activity with organic electronic ion pumps. <i>Advanced Materials</i> , 2015 , 27, 3138	-4244	110
211	Cholinium-based ion gels as solid electrolytes for long-term cutaneous electrophysiology. <i>Journal of Materials Chemistry C</i> , 2015 , 3, 8942-8948	7.1	37
210	Fully printed metabolite sensor using organic electrochemical transistor 2015,		3
209	NeuroGrid: recording action potentials from the surface of the brain. <i>Nature Neuroscience</i> , 2015 , 18, 310-5	25.5	538
208	Organic electrochemical transistors for clinical applications. <i>Advanced Healthcare Materials</i> , 2015 , 4, 14	2 1 76.1	99
207	A glucose sensor via stable immobilization of the GOx enzyme on an organic transistor using a polymer brush. <i>Journal of Polymer Science Part A</i> , 2015 , 53, 372-377	2.5	50
206	MRS Communications, Polymers and Soft Matter special issue, Part A The functionality of polymers: fundamentals to technology. <i>MRS Communications</i> , 2015 , 5, 95-95	2.7	2

(2014-2015)

205	Screen-printed organic electrochemical transistors for metabolite sensing. <i>MRS Communications</i> , 2015 , 5, 507-511	2.7	31
204	Direct patterning of organic conductors on knitted textiles for long-term electrocardiography. <i>Scientific Reports</i> , 2015 , 5, 15003	4.9	112
203	Using white noise to gate organic transistors for dynamic monitoring of cultured cell layers. <i>Scientific Reports</i> , 2015 , 5, 11613	4.9	28
202	Synaptic plasticity functions in an organic electrochemical transistor. <i>Applied Physics Letters</i> , 2015 , 107, 263302	3.4	110
201	Preface to the special issue: Biomaterials and Bioelectronics. APL Materials, 2015, 3, 014601	5.7	
200	Localized Neuron Stimulation with Organic Electrochemical Transistors on Delaminating Depth Probes. <i>Advanced Materials</i> , 2015 , 27, 4405-4410	24	104
199	Optical Measurements Revealing Nonuniform Hole Mobility in Organic Electrochemical Transistors. <i>Advanced Electronic Materials</i> , 2015 , 1, 1500189	6.4	36
198	Neuromorphic Functions in PEDOT:PSS Organic Electrochemical Transistors. <i>Advanced Materials</i> , 2015 , 27, 7176-80	24	316
197	High-performance transistors for bioelectronics through tuning of channel thickness. <i>Science Advances</i> , 2015 , 1, e1400251	14.3	359
196	Electrochemistry provides a simple way to monitor Pseudomonas aeruginosa metabolites. <i>Annual International Conference of the IEEE Engineering in Medicine and Biology Society IEEE Engineering in Medicine and Biology Society Annual International Conference</i> , 2015 , 2015, 7522-5	0.9	6
195	Detection of fibronectin conformational changes in the extracellular matrix of live cells using plasmonic nanoplates. <i>Journal of Materials Chemistry B</i> , 2015 , 3, 9140-9147	7.3	7
194	The Rise of Organic Bioelectronics. <i>Chemistry of Materials</i> , 2014 , 26, 679-685	9.6	472
193	A facile biofunctionalisation route for solution processable conducting polymer devices. <i>Journal of Materials Chemistry B</i> , 2014 , 2, 2537-2545	7.3	54
192	Ion-selective organic electrochemical transistors. Advanced Materials, 2014, 26, 4803-7	24	103
191	Engineering hydrophilic conducting composites with enhanced ion mobility. <i>Physical Chemistry Chemical Physics</i> , 2014 , 16, 2275-9	3.6	23
190	Photolithographic Patterning of Organic Electronic Materials 2014 , 399-420		
189	A high transconductance accumulation mode electrochemical transistor. <i>Advanced Materials</i> , 2014 , 26, 7450-5	24	116
188	Organic bioelectronics: general discussion. <i>Faraday Discussions</i> , 2014 , 174, 413-28	3.6	4

187	Organic electrochemical transistors as impedance biosensors. MRS Communications, 2014 , 4, 189-194	2.7	30
186	Ionic liquid gel-assisted electrodes for long-term cutaneous recordings. <i>Advanced Healthcare Materials</i> , 2014 , 3, 1377-80	10.1	62
185	A physical interpretation of impedance at conducting polymer/electrolyte junctions. <i>AIP Advances</i> , 2014 , 4, 017127	1.5	28
184	Dynamic monitoring of Salmonella typhimurium infection of polarized epithelia using organic transistors. <i>Advanced Healthcare Materials</i> , 2014 , 3, 1053-60	10.1	51
183	Organic electrochemical transistors for BioMEMS applications 2014,		1
182	Conducting polymer thin films as substrates for cell cultures. <i>Materials Research Society Symposia Proceedings</i> , 2014 , 1624, 1		
181	Conducting polymer electrodes for electroencephalography. <i>Advanced Healthcare Materials</i> , 2014 , 3, 490-3	10.1	71
180	PEDOT:gelatin composites mediate brain endothelial cell adhesion. <i>Journal of Materials Chemistry B</i> , 2013 , 1, 3860-3867	7.3	46
179	High transconductance organic electrochemical transistors. <i>Nature Communications</i> , 2013 , 4, 2133	17.4	464
178	Unexpected interaction between PEDOT and phosphonium ionic liquids. <i>Journal of the American Chemical Society</i> , 2013 , 135, 11309-13	16.4	28
177	A simple model for ion injection and transport in conducting polymers. <i>Journal of Applied Physics</i> , 2013 , 113, 244501	2.5	34
176	Fibronectin conformation regulates the proangiogenic capability of tumor-associated adipogenic stromal cells. <i>Biochimica Et Biophysica Acta - General Subjects</i> , 2013 , 1830, 4314-20	4	32
175	Organic electrochemical transistors with maximum transconductance at zero gate bias. <i>Advanced Materials</i> , 2013 , 25, 7010-4	24	155
174	In vivo recordings of brain activity using organic transistors. <i>Nature Communications</i> , 2013 , 4, 1575	17.4	605
173	Easy-to-fabricate conducting polymer microelectrode arrays. <i>Advanced Materials</i> , 2013 , 25, 2135-9	24	166
172	Organic bioelectronics: a new era for organic electronics. <i>Biochimica Et Biophysica Acta - General Subjects</i> , 2013 , 1830, 4286-7	4	70
171	Direct measurement of ion mobility in a conducting polymer. <i>Advanced Materials</i> , 2013 , 25, 4488-93	24	215
170	Bright infrared LEDs based on colloidal quantum-dots. <i>Materials Research Society Symposia Proceedings</i> , 2013 , 1509, 1		

Organic electrochemical transistor incorporating an ionogel as a solid state electrolyte for lactate sensing. <i>Journal of Materials Chemistry</i> , 2012 , 22, 4440		203
Organic electrochemical transistors monitoring micelle formation. <i>Chemical Science</i> , 2012 , 3, 3432	9.4	44
Spectroscopic and morphological investigation of conjugated photopolymerisable quinquethiophene liquid crystals. <i>Current Applied Physics</i> , 2012 , 12, e59-e66	2.6	4
Measurement of barrier tissue integrity with an organic electrochemical transistor. <i>Advanced Materials</i> , 2012 , 24, 5919-23	24	133
PEDOT:TOS with PEG: a biofunctional surface with improved electronic characteristics. <i>Journal of Materials Chemistry</i> , 2012 , 22, 19498		39
Bright infrared quantum-dot light-emitting diodes through inter-dot spacing control. <i>Nature</i> Nanotechnology, 2012 , 7, 369-73	28.7	363
Electrical control of protein conformation. Advanced Materials, 2012, 24, 2501-5	24	62
Plastic neuronal probes for implantation in cortical and subcortical areas of the rat brain. International Journal of Nanotechnology, 2012, 9, 517	1.5	7
A survey of electron-deficient pentacenes as acceptors in polymer bulk heterojunction solar cells. <i>Chemical Science</i> , 2011 , 2, 363-368	9.4	114
Orthogonal processing: A new strategy for organic electronics. <i>Chemical Science</i> , 2011 , 2, 1178	9.4	92
Organic electronics on natural cotton fibres. <i>Organic Electronics</i> , 2011 , 12, 2033-2039	3.5	76
Optimization of organic electrochemical transistors for sensor applications. <i>Journal of Polymer Science, Part B: Polymer Physics</i> , 2011 , 49, 34-39	2.6	60
Orthogonal processing and patterning enabled by highly fluorinated light-emitting polymers. <i>Advanced Materials</i> , 2011 , 23, 735-9	24	35
Detection of transmitter release from single living cells using conducting polymer microelectrodes. <i>Advanced Materials</i> , 2011 , 23, H184-8	24	67
Highly conformable conducting polymer electrodes for in vivo recordings. <i>Advanced Materials</i> , 2011 , 23, H268-72	24	270
Isomerically pure electron-deficient anthradithiophenes and their acceptor performance in polymer solar cells. <i>Chemical Communications</i> , 2011 , 47, 7617-9	5.8	36
High speed and high density organic electrochemical transistor arrays. <i>Applied Physics Letters</i> , 2011 , 99, 163304	3.4	81
Room-temperature preparation of crystalline TiO2 thin films and their applications in polymer/TiO2	3.5	16
	Organic electrochemical transistors monitoring micelle formation. Chemical Science, 2012, 3, 3432 Spectroscopic and morphological investigation of conjugated photopolymerisable quinquethiophene liquid crystals. Current Applied Physics, 2012, 12, e59-e66 Measurement of barrier tissue integrity with an organic electrochemical transistor. Advanced Materials, 2012, 24, 5919-23 PEDOT:TOS with PEG: a biofunctional surface with improved electronic characteristics. Journal of Materials Chemistry, 2012, 22, 19498 Bright infrared quantum-dot light-emitting diodes through inter-dot spacing control. Nature Nanotechnology, 2012, 7, 369-73 Electrical control of protein conformation. Advanced Materials, 2012, 24, 2501-5 Plastic neuronal probes for implantation in cortical and subcortical areas of the rat brain. International Journal of Nanotechnology, 2012, 9, 517 As survey of electron-deficient pentacenes as acceptors in polymer bulk heterojunction solar cells. Chemical Science, 2011, 2, 363-368 Orthogonal processing: A new strategy for organic electronics. Chemical Science, 2011, 2, 1178 Organic electronics on natural cotton fibres. Organic Electronics, 2011, 12, 2033-2039 Optimization of organic electrochemical transistors for sensor applications. Journal of Polymer Science, Part B: Polymer Physics, 2011, 49, 34-39 Orthogonal processing and patterning enabled by highly fluorinated light-emitting polymers. Advanced Materials, 2011, 23, 735-9 Detection of transmitter release from single living cells using conducting polymer microelectrodes. Advanced Materials, 2011, 23, H184-8 Highly conformable conducting polymer electrodes for in vivo recordings. Advanced Materials, 2011, 23, H184-8 Highly conformable conducting polymer electrochemical transistor arrays. Applied Physics Letters, 2011, 19, 163304	Organic electrochemical transistors monitoring micelle formation. Chemical Science, 2012, 3, 3432 94 Spectroscopic and morphological investigation of conjugated photopolymerisable quinquethiophene liquid crystals. Current Applied Physics, 2012, 12, e59-e66 Measurement of barrier tissue integrity with an organic electrochemical transistor. Advanced Materials, 2012, 24, 5919-23 PEDOT:TOS with PEG: a biofunctional surface with improved electronic characteristics. Journal of Materials Chemistry, 2012, 22, 19498 PEDOT:TOS with PEG: a biofunctional surface with improved electronic characteristics. Journal of Materials Chemistry, 2012, 22, 19498 PEDOT:TOS with PEG: a biofunctional surface with improved electronic characteristics. Journal of Materials Chemistry, 2012, 27, 19498 PEDOT:TOS with PEG: a biofunctional surface with improved electronic characteristics. Journal of Materials Chemistry, 2012, 27, 19498 PEDOT:TOS with PEG: a biofunctional surface with improved electronic characteristics. Journal of Materials Chamical Science Chamical Control of protein conformation. Advanced Materials, 2012, 24, 2501-5 24 PEDOT:TOS with PEG: a biofunctional surface with improved electronical areas of the rat brain. International Journal of Polymer Physics, 2011, 2, 363-368 PEDOT:Tos with PEG: a biofunction in cortical and subcortical areas of the rat brain. International Journal of Polymer Physics, 2011, 2, 363-368 Porthogonal processing: A new strategy for organic electronics. Chemical Science, 2011, 2, 1178 24 PORTHOGONAL PROVINGE Physics, 2011, 49, 34-39 Poptimization of organic electrochemical transistors for sensor applications. Journal of Polymer Advanced Materials, 2011, 23, 735-9 Poptimization of organic electrochemical transistors for sensor applications. Journal of Polymer Science, Part B: Polymer Physics, 2011, 49, 34-39 Poptimization of organic electrochemical transistors for sensor applications. Journal of Polymer Science, Part B: Polymer Physics, 2011, 49, 34-39 Poptimization of organic electrochemi

151	Electrogenerated chemiluminescence from carbon dots. <i>Materials Research Society Symposia Proceedings</i> , 2011 , 1284, 131		2
150	Electrochemical transistors with ionic liquids for enzymatic sensing 2011 ,		1
149	Wearable electrochemical sensors for monitoring performance athletes 2011,		10
148	Fabrication of polymer-based electronic circuits using photolithography. <i>Applied Physics Letters</i> , 2011 , 99, 183308	3.4	17
147	Effect of the gate electrode on the response of organic electrochemical transistors. <i>Applied Physics Letters</i> , 2010 , 97, 123304	3.4	107
146	Photoelectrical imaging and characterization of point contacts in pentacene thin-film transistors. <i>Applied Physics Letters</i> , 2010 , 97, 023308	3.4	8
145	High performance organic transistors: Percolating arrays of nanotubes functionalized with an electron deficient olefin. <i>Applied Physics Letters</i> , 2010 , 97, 053304	3.4	
144	An electrochemical glucose sensor from an organically modified nanocomposite of viologen and TiO2. <i>Journal of Nanoscience and Nanotechnology</i> , 2010 , 10, 6869-73	1.3	6
143	Importance of C(2) symmetry for the device performance of a newly synthesized family of fused-ring thiophenes. <i>Chemistry of Materials</i> , 2010 , 22, 2770-2779	9.6	33
142	Semiperfluoroalkyl Polyfluorenes for Orthogonal Processing in Fluorous Solvents. <i>Macromolecules</i> , 2010 , 43, 1195-1198	5.5	36
141	Orthogonal lithography for organic electronics 2010 ,		5
140	Organic Electronics at the Interface with Biology. MRS Bulletin, 2010, 35, 449-456	3.2	231
139	Electrochemical transistors with ionic liquids for enzymatic sensing. <i>Chemical Communications</i> , 2010 , 46, 7972-4	5.8	96
138	Solvent vapor annealing of an insoluble molecular semiconductor. <i>Journal of Materials Chemistry</i> , 2010 , 20, 2623		27
137	A Glucose Sensor Based on an Organic Electrochemical Transistor Structure Using a Vapor Polymerized Poly(3,4-ethylenedioxythiophene) Layer. <i>Japanese Journal of Applied Physics</i> , 2010 , 49, 01	ΑĒ10	19
136	Control of cell migration using a conducting polymer device. <i>Soft Matter</i> , 2010 , 6, 5138	3.6	50
135	Influence of device geometry on sensor characteristics of planar organic electrochemical transistors. <i>Advanced Materials</i> , 2010 , 22, 1012-6	24	130
134	Multiplexed protein patterns on a photosensitive hydrophilic polymer matrix. <i>Advanced Materials</i> , 2010 , 22, 1242-6	24	19

(2009-2010)

133	Fabrication of high-mobility poly(3-hexylthiophene) transistors at ambient conditions. <i>Organic Electronics</i> , 2010 , 11, 1507-1510	3.5	6
132	A light-emitting memristor. <i>Organic Electronics</i> , 2010 , 11, 150-153	3.5	38
131	Lead-salt quantum-dot ionic liquids. <i>Small</i> , 2010 , 6, 638-41	11	37
130	Organic Electrochemical Transistors for Sensor Applications 2010 , 163-192		2
129	Degradation of Ir(ppy)2(dtb-bpy)PF6 iTMC OLEDs. <i>Materials Research Society Symposia Proceedings</i> , 2009 , 1154, 1		
128	All-plastic electrochemical transistor for glucose sensing using a ferrocene mediator. <i>Sensors</i> , 2009 , 9, 9896-902	3.8	88
127	Coverage dependent adsorption dynamics in hyperthermal organic thin film growth. <i>Journal of Chemical Physics</i> , 2009 , 130, 124701	3.9	29
126	Evolution of the Women in Materials Program: a Collaboration between Simmons College and the Cornell Center for Materials Research. <i>Materials Research Society Symposia Proceedings</i> , 2009 , 1233, 1		
125	Hole Injection in a Model Fluorenell riarylamine Copolymer. <i>Advanced Functional Materials</i> , 2009 , 19, 304-310	15.6	32
124	Orthogonal Patterning of PEDOT:PSS for Organic Electronics using Hydrofluoroether Solvents. <i>Advanced Materials</i> , 2009 , 21, 2314-2317	24	146
123	Organic thin-film transistors of pentacene films fabricated from a supersonic molecular beam source. <i>Applied Physics A: Materials Science and Processing</i> , 2009 , 95, 29-35	2.6	9
122	Alkylsubstituted thienothiophene semiconducting materials: structure-property relationships. <i>Journal of the American Chemical Society</i> , 2009 , 131, 11930-8	16.4	115
121	Post-deposition reorganization of pentacene films deposited on low-energy surfaces. <i>Journal of Materials Chemistry</i> , 2009 , 19, 5580		59
120	Electrogenerated chemiluminescence from PbS quantum dots. <i>Nano Letters</i> , 2009 , 9, 789-93	11.5	118
119	PbSe nanocrystal excitonic solar cells. <i>Nano Letters</i> , 2009 , 9, 3749-55	11.5	333
118	Soluble n-type pentacene derivatives as novel acceptors for organic solar cells. <i>Journal of Materials Chemistry</i> , 2009 , 19, 3049		97
117	Integration of a surface-directed microfluidic system with an organic electrochemical transistor array for multi-analyte biosensors. <i>Lab on A Chip</i> , 2009 , 9, 704-8	7.2	68
116	Cross-linkable molecular glasses: low dielectric constant materials patternable in hydrofluoroethers. <i>ACS Applied Materials & mp; Interfaces</i> , 2009 , 1, 2363-70	9.5	25

115	Acid-diffusion behaviour in organic thin films and its effect on patterning. <i>Journal of Materials Chemistry</i> , 2009 , 19, 2986		16
114	Electrical control of cell density gradients on a conducting polymer surface. <i>Chemical Communications</i> , 2009 , 5278-80	5.8	54
113	High voltage polymer solar cell patterned with photolithography. <i>Journal of Materials Chemistry</i> , 2009 , 19, 5394		13
112	Suppression of metallic conductivity of single-walled carbon nanotubes by cycloaddition reactions. <i>Science</i> , 2009 , 323, 234-7	33.3	128
111	Orthogonal Processing: A Novel Photolithographic Patterning Method for Organic Electronics. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2009 , 22, 565-569	0.7	23
110	Operating mechanism of light-emitting electrochemical cells. <i>Nature Materials</i> , 2008 , 7, 168-168	27	44
109	Enzymatic sensing with organic electrochemical transistors. <i>Journal of Materials Chemistry</i> , 2008 , 18, 116-120		251
108	Dry photolithographic patterning process for organic electronic devices using supercritical carbon dioxide as a solvent. <i>Journal of Materials Chemistry</i> , 2008 , 18, 3087		39
107	Tetrathienoacene copolymers as high mobility, soluble organic semiconductors. <i>Journal of the American Chemical Society</i> , 2008 , 130, 13202-3	16.4	166
106	Acid-sensitive semiperfluoroalkyl resorcinarene: an imaging material for organic electronics. <i>Journal of the American Chemical Society</i> , 2008 , 130, 11564-5	16.4	62
105	Improved Turn-On Times of Light-Emitting Electrochemical Cells. <i>Chemistry of Materials</i> , 2008 , 20, 388-3	3966	100
104	Spray-deposited poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) top electrode for organic solar cells. <i>Applied Physics Letters</i> , 2008 , 93, 193301	3.4	69
103	Enhanced emission from fcc fluorescent photonic crystals. <i>Physical Review B</i> , 2008 , 77,	3.3	11
102	Two-step exciton dissociation in poly(3-hexylthiophene)/fullerene heterojunctions. <i>Applied Physics Letters</i> , 2008 , 92, 143308	3.4	39
101	Real time monitoring of pentacene growth on SiO2 from a supersonic source. <i>Applied Physics Letters</i> , 2008 , 92, 253304	3.4	30
100	Applications of poly(3,4-ethylenedioxythiophene) doped with poly(styrene sulfonic acid) transistors in chemical and biological sensors. <i>Chemical Record</i> , 2008 , 8, 13-22	6.6	66
99	Hydrofluoroethers as Orthogonal Solvents for the Chemical Processing of Organic Electronic Materials. <i>Advanced Materials</i> , 2008 , 20, 3481-3484	24	128
98	Flexible, organic light-pen input device with integrated display. <i>Sensors and Actuators B: Chemical</i> , 2008 , 135, 122-127	8.5	18

(2006-2007)

97	2007 , 17, 2976-2988		324
96	Observation of intermediate-range order in a nominally amorphous molecular semiconductor film. <i>Journal of Materials Chemistry</i> , 2007 , 17, 1458-1461		37
95	In situ identification of a luminescence quencher in an organic light-emitting device. <i>Journal of Materials Chemistry</i> , 2007 , 17, 76-81		35
94	Electrospun light-emitting nanofibers. <i>Nano Letters</i> , 2007 , 7, 458-63	11.5	125
93	Efficient solution-processed photovoltaic cells based on an anthradithiophene/fullerene blend. <i>Journal of the American Chemical Society</i> , 2007 , 129, 9144-9	16.4	196
92	Synthesis of a Soluble n-Type Cyano Substituted Polythiophene Derivative: A Potential Electron Acceptor in Polymeric Solar Cells. <i>Journal of Physical Chemistry C</i> , 2007 , 111, 10732-10740	3.8	46
91	Simple glucose sensors with micromolar sensitivity based on organic electrochemical transistors. <i>Sensors and Actuators B: Chemical</i> , 2007 , 123, 374-378	8.5	119
90	Photovoltaics from soluble small molecules. <i>Materials Today</i> , 2007 , 10, 34-41	21.8	356
89	Direct measurement of the electric-field distribution in a light-emitting electrochemical cell. <i>Nature Materials</i> , 2007 , 6, 894-9	27	256
88	Degradation of hole injection at the contact between a conducting polymer and a fluorene copolymer. <i>Applied Physics Letters</i> , 2007 , 91, 042116	3.4	8
87	Integrated reactive ion etching to pattern cross-linked hydrophilic polymer structures for protein immobilization. <i>Applied Physics Letters</i> , 2007 , 90, 144107	3.4	3
86	Degradation in iTMC OLEDs. Materials Research Society Symposia Proceedings, 2007, 1029, 1		
85	Using Atomic Steps to Control Pentacene Crystal Orientation Texture. <i>Materials Research Society Symposia Proceedings</i> , 2006 , 965, 1		
84	Dynamics of bimodal growth in pentacene thin films. <i>Physical Review Letters</i> , 2006 , 97, 105503	7.4	86
83	Direct 120V, 60Hz operation of an organic light emitting device. <i>Journal of Applied Physics</i> , 2006 , 99, 074502	2.5	44
82	Nondispersive hole transport in a polyfluorene copolymer with a mobility of 0.01cm2V I sI. <i>Applied Physics Letters</i> , 2006 , 89, 172116	3.4	40
81	Growth dynamics of pentacene thin films: Real-time synchrotron x-ray scattering study. <i>Physical Review B</i> , 2006 , 73,	3.3	55
80	Roughness-induced energetic disorder at the metal/organic interface. <i>Physical Review B</i> , 2006 , 73,	3.3	7

79	Using atomic steps to induce texture in polycrystalline pentacene films. <i>Applied Physics Letters</i> , 2006 , 89, 253116	3.4	21
78	Energetic disorder at the metal-organic semiconductor interface. <i>Physical Review B</i> , 2006 , 73,	3.3	13
77	Gating of an organic transistor through a bilayer lipid membrane with ion channels. <i>Applied Physics Letters</i> , 2006 , 89, 053505	3.4	93
76	Identification of a quenching species in ruthenium tris-bipyridine electroluminescent devices. <i>Journal of the American Chemical Society</i> , 2006 , 128, 7761-4	16.4	102
75	Observation of electroluminescence and photovoltaic response in ionic junctions. <i>Science</i> , 2006 , 313, 1416-9	33.3	76
74	Structure of a pentacene monolayer deposited on SiO2: Role of trapped interfacial water. <i>Journal of Applied Physics</i> , 2006 , 100, 093504	2.5	21
73	Transport energy in disordered organic materials. <i>Physica Status Solidi (B): Basic Research</i> , 2006 , 243, 387-390	1.3	12
72	Transversal and longitudinal diffusion in polar disordered organic materials. <i>Physica Status Solidi</i> (B): Basic Research, 2006 , 243, 391-394	1.3	8
71	Photolithographic patterning of organic electronic materials. <i>Organic Electronics</i> , 2006 , 7, 22-28	3.5	179
70	Chemical and biological sensors based on organic thin-film transistors. <i>Analytical and Bioanalytical Chemistry</i> , 2006 , 384, 343-53	4.4	389
69	Improved Turn-on Times of Iridium Electroluminescent Devices by Use of Ionic Liquids. <i>Chemistry of Materials</i> , 2005 , 17, 3187-3190	9.6	190
68	Green electroluminescence from an ionic iridium complex. <i>Applied Physics Letters</i> , 2005 , 86, 173506	3.4	116
67	Synthesis and characterization of electron-deficient pentacenes. <i>Organic Letters</i> , 2005 , 7, 3163-6	6.2	251
66	Addition of a Phosphorescent Dopant in Electroluminescent Devices from Ionic Transition Metal Complexes. <i>Chemistry of Materials</i> , 2005 , 17, 6114-6116	9.6	87
65	An Organic Electronics Primer. <i>Physics Today</i> , 2005 , 58, 53-58	0.9	316
64	Single-Layer Electroluminescent Devices and Photoinduced Hydrogen Production from an Ionic Iridium(III) Complex. <i>Chemistry of Materials</i> , 2005 , 17, 5712-5719	9.6	706
63	Charge injection in doped organic semiconductors. <i>Journal of Applied Physics</i> , 2005 , 97, 023705	2.5	29
62	Microfluidic gating of an organic electrochemical transistor. <i>Applied Physics Letters</i> , 2005 , 87, 013503	3.4	60

61	Light Emitting Devices from Ionic Transition Metal Complexes 2005, SMB3		1
60	Thickness Dependence of Mobility in Pentacene Thin-Film Transistors. <i>Advanced Materials</i> , 2005 , 17, 1795-1798	24	288
59	Women in Materials: a Collaborative Effort between Simmons College and the Cornell Center for Materials Research. <i>Materials Research Society Symposia Proceedings</i> , 2005 , 909, 1		
58	Postfabrication annealing of pentacene-based photovoltaic cells. <i>Applied Physics Letters</i> , 2004 , 85, 6277	2- <u>6</u> ,474	91
57	Temperature dependence of tris(2,2?-bipyridine) ruthenium (II) device characteristics. <i>Journal of Applied Physics</i> , 2004 , 95, 4381-4384	2.5	11
56	Organic light-emitting devices with laminated top contacts. <i>Applied Physics Letters</i> , 2004 , 84, 3675-367	7 3.4	55
55	Degradation of Ru(left({{text{bpy}}} right)_3^{2 + })-based OLEDs. <i>Materials Research Society Symposia Proceedings</i> , 2004 , 846, DD11.11.1		
54	Development of a Compact System for In-situ X-ray Scattering Studies of Organic Thin Film Deposition. <i>AIP Conference Proceedings</i> , 2004 ,	O	2
53	How to make ohmic contacts to organic semiconductors. <i>ChemPhysChem</i> , 2004 , 5, 16-25	3.2	251
52	Early stages of pentacene film growth on silicon oxide. <i>Organic Electronics</i> , 2004 , 5, 257-263	3.5	80
51	Cascaded light-emitting devices based on a ruthenium complex. <i>Applied Physics Letters</i> , 2004 , 84, 4980-	49.82	31
50	Pentacene Thin Film Growth. <i>Chemistry of Materials</i> , 2004 , 16, 4497-4508	9.6	541
49	Structure of pentacene thin films. <i>Applied Physics Letters</i> , 2004 , 85, 4926-4928	3.4	153
48	Contact issues in electroluminescent devices from ruthenium complexes. <i>Applied Physics Letters</i> , 2004 , 84, 807-809	3.4	48
47	Efficient yellow electroluminescence from a single layer of a cyclometalated iridium complex. <i>Journal of the American Chemical Society</i> , 2004 , 126, 2763-7	16.4	595
46	A simple poly(3,4-ethylene dioxythiophene)/poly(styrene sulfonic acid) transistor for glucose sensing at neutral pH. <i>Chemical Communications</i> , 2004 , 1556-7	5.8	174
45	Electroluminescence in Ruthenium(II) Dendrimers Journal of Physical Chemistry A, 2003, 107, 8130-813	32.8	54
44	Solid-state electroluminescent devices based on transition metal complexes. <i>Chemical Communications</i> , 2003 , 2392-9	5.8	311

43	Photophysical properties of tris(bipyridyl)ruthenium(II) thin films and devices. <i>Physical Chemistry Chemical Physics</i> , 2003 , 5, 2706-2709	3.6	70
42	Charge transport in doped organic semiconductors. <i>Physical Review B</i> , 2003 , 68,	3.3	52
41	Current-Induced Degradation in Polythiophene. <i>Materials Research Society Symposia Proceedings</i> , 2002 , 734, 941		
40	Electroluminescence in ruthenium(II) complexes. <i>Journal of the American Chemical Society</i> , 2002 , 124, 13624-8	16.4	168
39	Humidity sensors based on pentacene thin-film transistors. <i>Applied Physics Letters</i> , 2002 , 81, 4643-4645	3.4	310
38	Improvement in the Efficiency of Organic Light Emitting Diode Consisting of Copolymer having Hole and Electron Transporting Moieties and CsF as an Injection Material. <i>Molecular Crystals and Liquid Crystals</i> , 2002 , 377, 77-80	0.5	
37	Modification of Indium Tin Oxide for Improved Hole Injection in Organic Light Emitting Diodes. <i>Advanced Materials</i> , 2001 , 13, 1234	24	91
36	Space-charge limited current in the single-electron regime. <i>Physical Review B</i> , 2001 , 64,	3.3	9
35	Orientation of pentacene films using surface alignment layers and its influence on thin-film transistor characteristics. <i>Applied Physics Letters</i> , 2001 , 79, 1300-1302	3.4	118
34	Mobility-dependent charge injection into an organic semiconductor. <i>Physical Review Letters</i> , 2001 , 86, 3867-70	7.4	146
33	Nondispersive electron transport in Alq3. Applied Physics Letters, 2001, 79, 2582-2584	3.4	143
32	Silole Derivatives with a High and Non-dispersive Electron Mobility, and a 100 % Photoluminescence Quantum Efficiency. <i>Materials Research Society Symposia Proceedings</i> , 2001 , 665, 1		1
31	Charge transport processes in organic light-emitting devices. <i>Synthetic Metals</i> , 2000 , 111-112, 289-293	3.6	47
30	Role of CsF on electron injection into a conjugated polymer. <i>Applied Physics Letters</i> , 2000 , 77, 2403-2409	53.4	134
29	Hole limited recombination in polymer light-emitting diodes. <i>Applied Physics Letters</i> , 1999 , 74, 1510-151	3 .4	63
28	Charge injection and recombination at the metalörganic interface. <i>Chemical Physics Letters</i> , 1999 , 299, 115-119	2.5	379
27	Numerical simulations of the electrical characteristics and the efficiencies of single-layer organic light emitting diodes. <i>Journal of Applied Physics</i> , 1999 , 85, 7426-7432	2.5	156
26	Temperature- and field-dependent electron and hole mobilities in polymer light-emitting diodes. <i>Applied Physics Letters</i> , 1999 , 74, 1132-1134	3.4	340

25	The Chemistry, Physics and Engineering of Organic Light-Emitting Diodes 1999, 411-461		3
24	Temperature and Field Dependence in Polymer Light Emitting Diodes. <i>Materials Research Society Symposia Proceedings</i> , 1999 , 558, 453		
23	The Physics of Organic Light-Emitting Devices. <i>Materials Research Society Symposia Proceedings</i> , 1999 , 558, 499		1
22	Temperature and Field Dependence in Polymer Light Emitting Diodes. <i>Materials Research Society Symposia Proceedings</i> , 1999 , 561, 195		
21	Electrical characteristics and efficiency of single-layer organic light-emitting diodes. <i>Physical Review B</i> , 1998 , 58, R13411-R13414	3.3	542
20	The roles of injection and mobility in organic light emitting diodes. <i>Journal of Applied Physics</i> , 1998 , 83, 5399-5403	2.5	241
19	Photovoltaic measurement of the built-in potential in organic light emitting diodes and photodiodes. <i>Journal of Applied Physics</i> , 1998 , 84, 1583-1587	2.5	194
18	Photonic materials for electroluminescent, laser and photovoltaic devices. <i>Macromolecular Symposia</i> , 1998 , 125, 99-109	0.8	6
17	Photonic polymers for the devices of the 21st century. <i>Macromolecular Symposia</i> , 1997 , 121, 27-34	0.8	1
16	Novel Bifunctional Molecule for Photorefractive Materials. <i>Chemistry of Materials</i> , 1997 , 9, 1407-1413	9.6	20
15	Effect of Plasticization on the Performance of a Photorefractive Polymer. <i>The Journal of Physical Chemistry</i> , 1996 , 100, 16356-16360		30
14	The influence of disorder on the space charge field formation in photorefractive polymers. <i>Journal Physics D: Applied Physics</i> , 1996 , 29, 2045-2048	3	8
13	Photorefractivity in poly(N-vinylcarbazole)-based polymer composites. <i>Journal of Optics</i> , 1996 , 5, 631-6	43	3
12	Holographic time-of-flight measurements of the hole-drift mobility in a photorefractive polymer. <i>Physical Review B</i> , 1995 , 52, 14324-14327	3.3	23
11	Transient behavior of photorefractive gratings in a polymer. <i>Applied Physics Letters</i> , 1995 , 67, 455-457	3.4	30
10	Control of charge trapping in a photorefractive polymer. <i>Applied Physics Letters</i> , 1995 , 66, 1038-1040	3.4	47
9	Tuning of photo- and electroluminescence in alkylated polythiophenes with well-defined regioregularity. <i>Advanced Materials</i> , 1994 , 6, 132-135	24	143
8	The role of absorbing nonlinear optical chromophores in photorefractive polymers. <i>Advanced Materials</i> , 1994 , 6, 574-577	24	9

7	Photorefractive polymer composite with net gain and subsecond response at 633 nm. <i>Applied Physics Letters</i> , 1994 , 65, 262-264	3.4	28
6	Photorefractive polymer materials 1993,		2
5	Tuning of the photo- and electroluminescence in multi-block copolymers of poly[(silanylene)thiophene]s via exciton confinement. <i>Advanced Materials</i> , 1993 , 5, 721-723	24	132
4	Cell-array biosensors137-154		
3	Correlation between Transient Response and Neuromorphic Behavior in Organic Electrochemical Transistors. <i>Advanced Electronic Materials</i> ,2101186	6.4	О
2	Mechanical matching of implant to host minimises foreign body reaction		15
1	Printed Organic Electrochemical Transistors for Detecting Nutrients in Whole Plant Sap. <i>Advanced Electronic Materials</i> ,2100853	6.4	1