George G Malliaras

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4589485/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The rise of plastic bioelectronics. Nature, 2016, 540, 379-385.	27.8	1,280
2	Organic electrochemical transistors. Nature Reviews Materials, 2018, 3, .	48.7	1,143
3	Single-Layer Electroluminescent Devices and Photoinduced Hydrogen Production from an Ionic Iridium(III) Complex. Chemistry of Materials, 2005, 17, 5712-5719.	6.7	829
4	In vivo recordings of brain activity using organic transistors. Nature Communications, 2013, 4, 1575.	12.8	776
5	NeuroGrid: recording action potentials from the surface of the brain. Nature Neuroscience, 2015, 18, 310-315.	14.8	745
6	Organic electronics for neuromorphic computing. Nature Electronics, 2018, 1, 386-397.	26.0	672
7	Efficient Yellow Electroluminescence from a Single Layer of a Cyclometalated Iridium Complex. Journal of the American Chemical Society, 2004, 126, 2763-2767.	13.7	654
8	Structural control of mixed ionic and electronic transport in conducting polymers. Nature Communications, 2016, 7, 11287.	12.8	627
9	High transconductance organic electrochemical transistors. Nature Communications, 2013, 4, 2133.	12.8	612
10	Pentacene Thin Film Growth. Chemistry of Materials, 2004, 16, 4497-4508.	6.7	588
11	Electrical characteristics and efficiency of single-layer organic light-emitting diodes. Physical Review B, 1998, 58, R13411-R13414.	3.2	584
12	The Rise of Organic Bioelectronics. Chemistry of Materials, 2014, 26, 679-685.	6.7	579
13	High-performance transistors for bioelectronics through tuning of channel thickness. Science Advances, 2015, 1, e1400251.	10.3	501
14	Chemical and biological sensors based on organic thin-film transistors. Analytical and Bioanalytical Chemistry, 2005, 384, 343-353.	3.7	437
15	Bright infrared quantum-dot light-emitting diodes through inter-dot spacing control. Nature Nanotechnology, 2012, 7, 369-373.	31.5	429
16	Charge injection and recombination at the metal–organic interface. Chemical Physics Letters, 1999, 299, 115-119.	2.6	426
17	Neuromorphic Functions in PEDOT:PSS Organic Electrochemical Transistors. Advanced Materials, 2015, 27, 7176-7180.	21.0	422
18	Next-generation probes, particles, and proteins for neural interfacing. Science Advances, 2017, 3, e1601649.	10.3	377

#	Article	IF	CITATIONS
19	Temperature- and field-dependent electron and hole mobilities in polymer light-emitting diodes. Applied Physics Letters, 1999, 74, 1132-1134.	3.3	367
20	Controlling the mode of operation of organic transistors through side-chain engineering. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 12017-12022.	7.1	364
21	Photovoltaics from soluble small molecules. Materials Today, 2007, 10, 34-41.	14.2	363
22	Conjugated Polymers in Bioelectronics. Accounts of Chemical Research, 2018, 51, 1368-1376.	15.6	361
23	PbSe Nanocrystal Excitonic Solar Cells. Nano Letters, 2009, 9, 3749-3755.	9.1	360
24	An Organic Electronics Primer. Physics Today, 2005, 58, 53-58.	0.3	348
25	Humidity sensors based on pentacene thin-film transistors. Applied Physics Letters, 2002, 81, 4643-4645.	3.3	346
26	Benchmarking organic mixed conductors for transistors. Nature Communications, 2017, 8, 1767.	12.8	343
27	Electroluminescent devices from ionic transition metal complexes. Journal of Materials Chemistry, 2007, 17, 2976-2988.	6.7	338
28	Solid-state electroluminescent devices based on transition metal complexes. Chemical Communications, 2003, , 2392-2399.	4.1	324
29	Highly Conformable Conducting Polymer Electrodes for In Vivo Recordings. Advanced Materials, 2011, 23, H268-72.	21.0	319
30	Enzymatic sensing with organic electrochemical transistors. Journal of Materials Chemistry, 2008, 18, 116-120.	6.7	317
31	Thickness Dependence of Mobility in Pentacene Thin-Film Transistors. Advanced Materials, 2005, 17, 1795-1798.	21.0	309
32	How To Make Ohmic Contacts to Organic Semiconductors. ChemPhysChem, 2004, 5, 16-25.	2.1	281
33	Direct measurement of the electric-field distribution in a light-emitting electrochemical cell. Nature Materials, 2007, 6, 894-899.	27.5	275
34	Molecular Design of Semiconducting Polymers for High-Performance Organic Electrochemical Transistors. Journal of the American Chemical Society, 2016, 138, 10252-10259.	13.7	270
35	The roles of injection and mobility in organic light emitting diodes. Journal of Applied Physics, 1998, 83, 5399-5403.	2.5	267
36	Direct Measurement of Ion Mobility in a Conducting Polymer. Advanced Materials, 2013, 25, 4488-4493.	21.0	267

#	Article	IF	CITATIONS
37	Organic Electronics at the Interface with Biology. MRS Bulletin, 2010, 35, 449-456.	3.5	265
38	Synthesis and Characterization of Electron-Deficient Pentacenes. Organic Letters, 2005, 7, 3163-3166.	4.6	263
39	Neuromorphic device architectures with global connectivity through electrolyte gating. Nature Communications, 2017, 8, 15448.	12.8	253
40	Organic electrochemical transistor incorporating an ionogel as a solid state electrolyte for lactate sensing. Journal of Materials Chemistry, 2012, 22, 4440.	6.7	248
41	N-type organic electrochemical transistors with stability in water. Nature Communications, 2016, 7, 13066.	12.8	242
42	Organic Electrochemical Transistors with Maximum Transconductance at Zero Gate Bias. Advanced Materials, 2013, 25, 7010-7014.	21.0	215
43	Photovoltaic measurement of the built-in potential in organic light emitting diodes and photodiodes. Journal of Applied Physics, 1998, 84, 1583-1587.	2.5	205
44	Efficient Solution-Processed Photovoltaic Cells Based on an Anthradithiophene/Fullerene Blend. Journal of the American Chemical Society, 2007, 129, 9144-9149.	13.7	205
45	Improved Turn-on Times of Iridium Electroluminescent Devices by Use of Ionic Liquids. Chemistry of Materials, 2005, 17, 3187-3190.	6.7	202
46	Photolithographic patterning of organic electronic materials. Organic Electronics, 2006, 7, 22-28.	2.6	201
47	Transparent, conformable, active multielectrode array using organic electrochemical transistors. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 10554-10559.	7.1	201
48	Easyâ€ŧoâ€Fabricate Conducting Polymer Microelectrode Arrays. Advanced Materials, 2013, 25, 2135-2139.	21.0	199
49	The Role of the Side Chain on the Performance of N-type Conjugated Polymers in Aqueous Electrolytes. Chemistry of Materials, 2018, 30, 2945-2953.	6.7	199
50	Highly porous scaffolds of PEDOT:PSS for bone tissue engineering. Acta Biomaterialia, 2017, 62, 91-101.	8.3	198
51	Understanding volumetric capacitance in conducting polymers. Journal of Polymer Science, Part B: Polymer Physics, 2016, 54, 1433-1436.	2.1	192
52	A simple poly(3,4-ethylene dioxythiophene)/poly(styrene sulfonic acid) transistor for glucose sensing at neutral pH. Chemical Communications, 2004, , 1556.	4.1	185
53	Numerical simulations of the electrical characteristics and the efficiencies of single-layer organic light emitting diodes. Journal of Applied Physics, 1999, 85, 7426-7432.	2.5	181
54	Electroluminescence in Ruthenium(II) Complexes. Journal of the American Chemical Society, 2002, 124, 13624-13628.	13.7	181

#	Article	IF	CITATIONS
55	Tetrathienoacene Copolymers As High Mobility, Soluble Organic Semiconductors. Journal of the American Chemical Society, 2008, 130, 13202-13203.	13.7	178
56	Electrolyte-gated transistors for enhanced performance bioelectronics. Nature Reviews Methods Primers, 2021, 1, .	21.2	172
57	Influence of Device Geometry on Sensor Characteristics of Planar Organic Electrochemical Transistors. Advanced Materials, 2010, 22, 1012-1016.	21.0	168
58	Orthogonal Patterning of PEDOT:PSS for Organic Electronics using Hydrofluoroether Solvents. Advanced Materials, 2009, 21, 2314-2317.	21.0	165
59	Organic Transistor Arrays Integrated with Fingerâ€Powered Microfluidics for Multianalyte Saliva Testing. Advanced Healthcare Materials, 2016, 5, 2295-2302.	7.6	164
60	Tuning of photo- and electroluminescence in alkylated polythiophenes with well-defined regioregularity. Advanced Materials, 1994, 6, 132-135.	21.0	163
61	Structure of pentacene thin films. Applied Physics Letters, 2004, 85, 4926-4928.	3.3	163
62	Foreign Body Reaction to Implanted Biomaterials and Its Impact in Nerve Neuroprosthetics. Frontiers in Bioengineering and Biotechnology, 2021, 9, 622524.	4.1	161
63	Wearable Keyboard Using Conducting Polymer Electrodes on Textiles. Advanced Materials, 2016, 28, 4485-4488.	21.0	159
64	Tuning of the photo- and electroluminescence in multi-block copolymers of poly[(silanylene)thiophene]s via exciton confinement. Advanced Materials, 1993, 5, 721-723.	21.0	158
65	Mobility-Dependent Charge Injection into an Organic Semiconductor. Physical Review Letters, 2001, 86, 3867-3870.	7.8	156
66	Nonthrombogenic, stretchable, active multielectrode array for electroanatomical mapping. Science Advances, 2018, 4, eaau2426.	10.3	155
67	Measurement of Barrier Tissue Integrity with an Organic Electrochemical Transistor. Advanced Materials, 2012, 24, 5919-5923.	21.0	152
68	Role of CsF on electron injection into a conjugated polymer. Applied Physics Letters, 2000, 77, 2403-2405.	3.3	151
69	Nondispersive electron transport in Alq3. Applied Physics Letters, 2001, 79, 2582-2584.	3.3	151
70	A High Transconductance Accumulation Mode Electrochemical Transistor. Advanced Materials, 2014, 26, 7450-7455.	21.0	151
71	Conjugated Polymers for Assessing and Controlling Biological Functions. Advanced Materials, 2019, 31, e1806712.	21.0	151
72	Direct patterning of organic conductors on knitted textiles for long-term electrocardiography. Scientific Reports, 2015, 5, 15003.	3.3	145

#	Article	IF	CITATIONS
73	Synaptic plasticity functions in an organic electrochemical transistor. Applied Physics Letters, 2015, 107, .	3.3	144
74	Hydrofluoroethers as Orthogonal Solvents for the Chemical Processing of Organic Electronic Materials. Advanced Materials, 2008, 20, 3481-3484.	21.0	142
75	Tailoring PEDOT properties for applications in bioelectronics. Materials Science and Engineering Reports, 2020, 140, 100546.	31.8	140
76	Electrospun Light-Emitting Nanofibers. Nano Letters, 2007, 7, 458-463.	9.1	139
77	Suppression of Metallic Conductivity of Single-Walled Carbon Nanotubes by Cycloaddition Reactions. Science, 2009, 323, 234-237.	12.6	139
78	Localized Neuron Stimulation with Organic Electrochemical Transistors on Delaminating Depth Probes. Advanced Materials, 2015, 27, 4405-4410.	21.0	139
79	Controlling Epileptiform Activity with Organic Electronic Ion Pumps. Advanced Materials, 2015, 27, 3138-3144.	21.0	138
80	Ion‣elective Organic Electrochemical Transistors. Advanced Materials, 2014, 26, 4803-4807.	21.0	136
81	Simple glucose sensors with micromolar sensitivity based on organic electrochemical transistors. Sensors and Actuators B: Chemical, 2007, 123, 374-378.	7.8	134
82	Effect of the gate electrode on the response of organic electrochemical transistors. Applied Physics Letters, 2010, 97, .	3.3	133
83	How conducting polymer electrodes operate. Science, 2019, 364, 233-234.	12.6	133
84	Electrogenerated Chemiluminescence from PbS Quantum Dots. Nano Letters, 2009, 9, 789-793.	9.1	131
85	Integration of Organic Electrochemical and Fieldâ€Effect Transistors for Ultraflexible, High Temporal Resolution Electrophysiology Arrays. Advanced Materials, 2016, 28, 9722-9728.	21.0	131
86	Green electroluminescence from an ionic iridium complex. Applied Physics Letters, 2005, 86, 173506.	3.3	127
87	Tailoring the Electrochemical and Mechanical Properties of PEDOT:PSS Films for Bioelectronics. Macromolecular Materials and Engineering, 2017, 302, 1600497.	3.6	127
88	Orientation of pentacene films using surface alignment layers and its influence on thin-film transistor characteristics. Applied Physics Letters, 2001, 79, 1300-1302.	3.3	124
89	Organic Electrochemical Transistors for Clinical Applications. Advanced Healthcare Materials, 2015, 4, 142-147.	7.6	124
90	Lactate Detection in Tumor Cell Cultures Using Organic Transistor Circuits. Advanced Materials, 2017, 29, 1605744.	21.0	123

#	Article	IF	CITATIONS
91	Alkylsubstituted Thienothiophene Semiconducting Materials: Structureâ^'Property Relationships. Journal of the American Chemical Society, 2009, 131, 11930-11938.	13.7	122
92	A Disposable paper breathalyzer with an alcohol sensing organic electrochemical transistor. Scientific Reports, 2016, 6, 27582.	3.3	122
93	A survey of electron-deficient pentacenes as acceptors in polymer bulk heterojunction solar cells. Chemical Science, 2011, 2, 363-368.	7.4	121
94	Electrophoretic drug delivery for seizure control. Science Advances, 2018, 4, eaau1291.	10.3	118
95	3D conducting polymer platforms for electrical control of protein conformation and cellular functions. Journal of Materials Chemistry B, 2015, 3, 5040-5048.	5.8	116
96	Improved Turn-On Times of Light-Emitting Electrochemical Cells. Chemistry of Materials, 2008, 20, 388-396.	6.7	110
97	Electrochemical transistors with ionic liquids for enzymatic sensing. Chemical Communications, 2010, 46, 7972.	4.1	110
98	Orthogonal processing: A new strategy for organic electronics. Chemical Science, 2011, 2, 1178.	7.4	109
99	Bioelectronic neural pixel: Chemical stimulation and electrical sensing at the same site. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 9440-9445.	7.1	107
100	Identification of a Quenching Species in Ruthenium Tris-Bipyridine Electroluminescent Devices. Journal of the American Chemical Society, 2006, 128, 7761-7764.	13.7	104
101	All-Plastic Electrochemical Transistor for Glucose Sensing Using a Ferrocene Mediator. Sensors, 2009, 9, 9896-9902.	3.8	104
102	Gating of an organic transistor through a bilayer lipid membrane with ion channels. Applied Physics Letters, 2006, 89, 053505.	3.3	101
103	Soluble n-type pentacene derivatives as novel acceptors for organic solar cells. Journal of Materials Chemistry, 2009, 19, 3049.	6.7	101
104	Modification of Indium Tin Oxide for Improved Hole Injection in Organic Light Emitting Diodes. Advanced Materials, 2001, 13, 1234.	21.0	99
105	Highâ€Performance Vertical Organic Electrochemical Transistors. Advanced Materials, 2018, 30, 1705031.	21.0	99
106	Postfabrication annealing of pentacene-based photovoltaic cells. Applied Physics Letters, 2004, 85, 6272-6274.	3.3	98
107	A Microfluidic Ion Pump for In Vivo Drug Delivery. Advanced Materials, 2017, 29, 1701217.	21.0	97
108	Voltage Amplifier Based on Organic Electrochemical Transistor. Advanced Science, 2017, 4, 1600247.	11.2	97

#	Article	IF	CITATIONS
109	Development and Translation of PEDOT:PSS Microelectrodes for Intraoperative Monitoring. Advanced Functional Materials, 2018, 28, 1700232.	14.9	97
110	Electroconductive Hydrogel Based on Functional Poly(Ethylenedioxy Thiophene). Chemistry of Materials, 2016, 28, 6080-6088.	6.7	96
111	High speed and high density organic electrochemical transistor arrays. Applied Physics Letters, 2011, 99, .	3.3	95
112	Addition of a Phosphorescent Dopant in Electroluminescent Devices from Ionic Transition Metal Complexes. Chemistry of Materials, 2005, 17, 6114-6116.	6.7	93
113	Dynamics of Bimodal Growth in Pentacene Thin Films. Physical Review Letters, 2006, 97, 105503.	7.8	91
114	Inkjetâ€Printed PEDOT:PSS Electrodes on Paper for Electrocardiography. Advanced Healthcare Materials, 2017, 6, 1601167.	7.6	91
115	Conducting Polymer Electrodes for Electroencephalography. Advanced Healthcare Materials, 2014, 3, 490-493.	7.6	89
116	Low-Temperature Cross-Linking of PEDOT:PSS Films Using Divinylsulfone. ACS Applied Materials & Interfaces, 2017, 9, 18254-18262.	8.0	86
117	Organic electronics on natural cotton fibres. Organic Electronics, 2011, 12, 2033-2039.	2.6	85
118	Fully Printed Electrodes on Stretchable Textiles for Longâ€Term Electrophysiology. Advanced Materials Technologies, 2017, 2, 1600251.	5.8	85
119	Early stages of pentacene film growth on silicon oxide. Organic Electronics, 2004, 5, 257-263.	2.6	84
120	Ionic Liquid Gelâ€Assisted Electrodes for Longâ€Term Cutaneous Recordings. Advanced Healthcare Materials, 2014, 3, 1377-1380.	7.6	83
121	Observation of Electroluminescence and Photovoltaic Response in Ionic Junctions. Science, 2006, 313, 1416-1419.	12.6	81
122	Impedance Spectroscopy of Spin ast and Electrochemically Deposited PEDOT:PSS Films on Microfabricated Electrodes with Various Areas. ChemElectroChem, 2017, 4, 2321-2327.	3.4	81
123	Stability of PEDOT:PSSâ€Coated Gold Electrodes in Cell Culture Conditions. Advanced Materials Technologies, 2020, 5, 1900662.	5.8	81
124	Orientation selectivity in a multi-gated organic electrochemical transistor. Scientific Reports, 2016, 6, 27007.	3.3	79
125	Organic transistor platform with integrated microfluidics for in-line multi-parametric in vitro cell monitoring. Microsystems and Nanoengineering, 2017, 3, 17028.	7.0	79
126	Applications of poly(3,4â€ethylenedioxythiophene) doped with poly(styrene sulfonic acid) transistors in chemical and biological sensors. Chemical Record, 2008, 8, 13-22.	5.8	78

#	Article	IF	CITATIONS
127	Redoxâ€Stability of Alkoxyâ€BDT Copolymers and their Use for Organic Bioelectronic Devices. Advanced Functional Materials, 2018, 28, 1706325.	14.9	77
128	Spray-deposited poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) top electrode for organic solar cells. Applied Physics Letters, 2008, 93, .	3.3	76
129	DVS rosslinked PEDOT:PSS Free‧tanding and Textile Electrodes toward Wearable Health Monitoring. Advanced Materials Technologies, 2018, 3, 1700322.	5.8	76
130	Photophysical properties of tris(bipyridyl)ruthenium(ii) thin films and devices. Physical Chemistry Chemical Physics, 2003, 5, 2706-2709.	2.8	75
131	Integration of a surface-directed microfluidic system with an organic electrochemical transistor array for multi-analyte biosensors. Lab on A Chip, 2009, 9, 704-708.	6.0	74
132	Optimization of organic electrochemical transistors for sensor applications. Journal of Polymer Science, Part B: Polymer Physics, 2011, 49, 34-39.	2.1	73
133	Organic bioelectronics: A new era for organic electronics. Biochimica Et Biophysica Acta - General Subjects, 2013, 1830, 4286-4287.	2.4	73
134	Referenceless pH Sensor using Organic Electrochemical Transistors. Advanced Materials Technologies, 2017, 2, 1600141.	5.8	72
135	Detection of Transmitter Release from Single Living Cells Using Conducting Polymer Microelectrodes. Advanced Materials, 2011, 23, H184-8.	21.0	71
136	Hole limited recombination in polymer light-emitting diodes. Applied Physics Letters, 1999, 74, 1510-1512.	3.3	69
137	Microfluidic gating of an organic electrochemical transistor. Applied Physics Letters, 2005, 87, 013503.	3.3	68
138	Electrical Control of Protein Conformation. Advanced Materials, 2012, 24, 2501-2505.	21.0	67
139	Acid-Sensitive Semiperfluoroalkyl Resorcinarene: An Imaging Material for Organic Electronics. Journal of the American Chemical Society, 2008, 130, 11564-11565.	13.7	66
140	When Bio Meets Technology: Biohybrid Neural Interfaces. Advanced Materials, 2020, 32, e1903182.	21.0	65
141	A facile biofunctionalisation route for solution processable conducting polymer devices. Journal of Materials Chemistry B, 2014, 2, 2537-2545.	5.8	63
142	Organic electrochemical transistors based on PEDOT with different anionic polyelectrolyte dopants. Journal of Polymer Science, Part B: Polymer Physics, 2016, 54, 147-151.	2.1	63
143	An Electrocorticography Device with an Integrated Microfluidic Ion Pump for Simultaneous Neural Recording and Electrophoretic Drug Delivery In Vivo. Advanced Biology, 2019, 3, e1800270.	3.0	63
144	Microsecond Response in Organic Electrochemical Transistors: Exceeding the Ionic Speed Limit. Advanced Materials, 2016, 28, 8398-8404.	21.0	61

#	Article	IF	CITATIONS
145	Post-deposition reorganization of pentacene films deposited on low-energy surfaces. Journal of Materials Chemistry, 2009, 19, 5580.	6.7	60
146	Influence of disorder on transfer characteristics of organic electrochemical transistors. Applied Physics Letters, 2017, 111, .	3.3	59
147	Organic neuromorphic devices: Past, present, and future challenges. MRS Bulletin, 2020, 45, 619-630.	3.5	59
148	Semiconducting Polymers for Neural Applications. Chemical Reviews, 2022, 122, 4356-4396.	47.7	59
149	Charge transport in doped organic semiconductors. Physical Review B, 2003, 68, .	3.2	58
150	A glucose sensor via stable immobilization of the GOx enzyme on an organic transistor using a polymer brush. Journal of Polymer Science Part A, 2015, 53, 372-377.	2.3	58
151	Charge transport processes in organic light-emitting devices. Synthetic Metals, 2000, 111-112, 289-293.	3.9	57
152	Electroluminescence in Ruthenium(II) Dendrimersâ€. Journal of Physical Chemistry A, 2003, 107, 8130-8133.	2.5	57
153	Organic light-emitting devices with laminated top contacts. Applied Physics Letters, 2004, 84, 3675-3677.	3.3	57
154	Electrical control of cell density gradients on a conducting polymer surface. Chemical Communications, 2009, , 5278.	4.1	57
155	Dynamic Monitoring of <i>Salmonella typhimurium</i> Infection of Polarized Epithelia Using Organic Transistors. Advanced Healthcare Materials, 2014, 3, 1053-1060.	7.6	57
156	Growth dynamics of pentacene thin films: Real-time synchrotron x-ray scattering study. Physical Review B, 2006, 73, .	3.2	56
157	Sodium and Potassium Ion Selective Conjugated Polymers for Optical Ion Detection in Solution and Solid State. Advanced Functional Materials, 2016, 26, 514-523.	14.9	56
158	Interfacing Electronic and Ionic Charge Transport in Bioelectronics. ChemElectroChem, 2016, 3, 686-688.	3.4	55
159	Conducting Polymer Scaffolds Based on Poly(3,4-ethylenedioxythiophene) and Xanthan Gum for Live-Cell Monitoring. ACS Omega, 2018, 3, 7424-7431.	3.5	55
160	Control of cell migration using a conducting polymer device. Soft Matter, 2010, 6, 5138.	2.7	54
161	Microfabricated Ion‧elective Transistors with Fast and Superâ€Nernstian Response. Advanced Materials, 2020, 32, e2004790.	21.0	54
162	Control of charge trapping in a photorefractive polymer. Applied Physics Letters, 1995, 66, 1038-1040.	3.3	53

#	Article	IF	CITATIONS
163	PEDOT:gelatin composites mediate brain endothelial cell adhesion. Journal of Materials Chemistry B, 2013, 1, 3860.	5.8	52
164	Cholinium-based ion gels as solid electrolytes for long-term cutaneous electrophysiology. Journal of Materials Chemistry C, 2015, 3, 8942-8948.	5.5	52
165	Contact issues in electroluminescent devices from ruthenium complexes. Applied Physics Letters, 2004, 84, 807-809.	3.3	50
166	Operating mechanism of light-emitting electrochemical cells. Nature Materials, 2008, 7, 168-168.	27.5	49
167	Wettability of PEDOT:PSS films. Soft Matter, 2016, 12, 5146-5153.	2.7	48
168	Screen-printed organic electrochemical transistors for metabolite sensing. MRS Communications, 2015, 5, 507-511.	1.8	47
169	Optical Measurements Revealing Nonuniform Hole Mobility in Organic Electrochemical Transistors. Advanced Electronic Materials, 2015, 1, 1500189.	5.1	47
170	A bilayered PVA/PLGA-bioresorbable shuttle to improve the implantation of flexible neural probes. Journal of Neural Engineering, 2018, 15, 065001.	3.5	47
171	Direct 120V, 60Hz operation of an organic light emitting device. Journal of Applied Physics, 2006, 99, 074502.	2.5	46
172	Synthesis of a Soluble n-Type Cyano Substituted Polythiophene Derivative:  A Potential Electron Acceptor in Polymeric Solar Cells. Journal of Physical Chemistry C, 2007, 111, 10732-10740.	3.1	46
173	Autoclave Sterilization of PEDOT:PSS Electrophysiology Devices. Advanced Healthcare Materials, 2016, 5, 3094-3098.	7.6	46
174	Fully printed all-polymer tattoo/textile electronics for electromyography. Flexible and Printed Electronics, 2018, 3, 034004.	2.7	46
175	Organic electrochemical transistors monitoring micelle formation. Chemical Science, 2012, 3, 3432.	7.4	45
176	Nondispersive hole transport in a polyfluorene copolymer with a mobility of 0.01cm2Vâ^'1sâ^'1. Applied Physics Letters, 2006, 89, 172116.	3.3	44
177	A light-emitting memristor. Organic Electronics, 2010, 11, 150-153.	2.6	44
178	A simple model for ion injection and transport in conducting polymers. Journal of Applied Physics, 2013, 113, .	2.5	44
179	Optical study of electrochromic moving fronts for the investigation of ion transport in conducting polymers. Journal of Materials Chemistry C, 2016, 4, 3942-3947.	5.5	44
180	Inflight fiber printing toward array and 3D optoelectronic and sensing architectures. Science Advances, 2020, 6, .	10.3	44

#	Article	IF	CITATIONS
181	Lead–Salt Quantumâ€Dot Ionic Liquids. Small, 2010, 6, 638-641.	10.0	43
182	A physical interpretation of impedance at conducting polymer/electrolyte junctions. AIP Advances, 2014, 4, .	1.3	43
183	Polyelectrolyte Layer-by-Layer Assembly on Organic Electrochemical Transistors. ACS Applied Materials & Interfaces, 2017, 9, 10427-10434.	8.0	43
184	Conducting Polymer longels Based on PEDOT and Guar Gum. ACS Macro Letters, 2017, 6, 473-478.	4.8	43
185	Biomedical devices go wild. Science Advances, 2018, 4, eaav1889.	10.3	43
186	Dry photolithographic patterning process for organic electronic devices using supercritical carbon dioxide as a solvent. Journal of Materials Chemistry, 2008, 18, 3087.	6.7	42
187	PEDOT:TOS with PEG: a biofunctional surface with improved electronic characteristics. Journal of Materials Chemistry, 2012, 22, 19498.	6.7	42
188	Two-step exciton dissociation in poly(3-hexylthiophene)/fullerene heterojunctions. Applied Physics Letters, 2008, 92, .	3.3	40
189	Observation of intermediate-range order in a nominally amorphous molecular semiconductor film. Journal of Materials Chemistry, 2007, 17, 1458-1461.	6.7	39
190	Semiperfluoroalkyl Polyfluorenes for Orthogonal Processing in Fluorous Solvents. Macromolecules, 2010, 43, 1195-1198.	4.8	39
191	In situ identification of a luminescence quencher in an organic light-emitting device. Journal of Materials Chemistry, 2007, 17, 76-81.	6.7	38
192	Isomerically pure electron-deficient anthradithiophenes and their acceptor performance in polymer solar cells. Chemical Communications, 2011, 47, 7617.	4.1	38
193	Orthogonal Processing and Patterning Enabled by Highly Fluorinated Lightâ€Emitting Polymers. Advanced Materials, 2011, 23, 735-739.	21.0	38
194	Organic electrochemical transistors as impedance biosensors. MRS Communications, 2014, 4, 189-194.	1.8	37
195	Importance of C2 Symmetry for the Device Performance of a Newly Synthesized Family of Fused-Ring Thiophenes. Chemistry of Materials, 2010, 22, 2770-2779.	6.7	36
196	Achieving long-term stability of thin-film electrodes for neurostimulation. Acta Biomaterialia, 2022, 139, 65-81.	8.3	36
197	Fibronectin conformation regulates the proangiogenic capability of tumor-associated adipogenic stromal cells. Biochimica Et Biophysica Acta - General Subjects, 2013, 1830, 4314-4320.	2.4	35
198	Transient behavior of photorefractive gratings in a polymer. Applied Physics Letters, 1995, 67, 455-457.	3.3	34

#	Article	IF	CITATIONS
199	Hole Injection in a Model Fluorene–Triarylamine Copolymer. Advanced Functional Materials, 2009, 19, 304-310.	14.9	34
200	PEDOT:PSS microelectrode arrays for hippocampal cell culture electrophysiological recordings. MRS Communications, 2017, 7, 259-265.	1.8	34
201	Cascaded light-emitting devices based on a ruthenium complex. Applied Physics Letters, 2004, 84, 4980-4982.	3.3	33
202	Effect of Plasticization on the Performance of a Photorefractive Polymer. The Journal of Physical Chemistry, 1996, 100, 16356-16360.	2.9	32
203	Charge injection in doped organic semiconductors. Journal of Applied Physics, 2005, 97, 023705.	2.5	32
204	Cross-Linkable Molecular Glasses: Low Dielectric Constant Materials Patternable in Hydrofluoroethers. ACS Applied Materials & Interfaces, 2009, 1, 2363-2370.	8.0	32
205	Unexpected Interaction between PEDOT and Phosphonium Ionic Liquids. Journal of the American Chemical Society, 2013, 135, 11309-11313.	13.7	32
206	Using white noise to gate organic transistors for dynamic monitoring of cultured cell layers. Scientific Reports, 2015, 5, 11613.	3.3	32
207	Controlling the Neuromorphic Behavior of Organic Electrochemical Transistors by Blending Mixed and Ion Conductors. ACS Applied Electronic Materials, 2020, 2, 2224-2228.	4.3	32
208	Microelectrode Arrays for Simultaneous Electrophysiology and Advanced Optical Microscopy. Advanced Science, 2021, 8, 2004434.	11.2	32
209	Electronics with shape actuation for minimally invasive spinal cord stimulation. Science Advances, 2021, 7, .	10.3	32
210	Real time monitoring of pentacene growth on SiO2 from a supersonic source. Applied Physics Letters, 2008, 92, 253304.	3.3	31
211	Photorefractive polymer composite with net gain and subsecond response at 633 nm. Applied Physics Letters, 1994, 65, 262-264.	3.3	30
212	Solvent vapor annealing of an insoluble molecular semiconductor. Journal of Materials Chemistry, 2010, 20, 2623.	6.7	30
213	Impact of contact overlap on transconductance and noise in organic electrochemical transistors. Flexible and Printed Electronics, 2019, 4, 044003.	2.7	30
214	Coverage dependent adsorption dynamics in hyperthermal organic thin film growth. Journal of Chemical Physics, 2009, 130, 124701.	3.0	29
215	Orientation selectivity with organic photodetectors and an organic electrochemical transistor. AIP Advances, 2016, 6, .	1.3	29
216	Recent advances in neural interfaces—Materials chemistry to clinical translation. MRS Bulletin, 2020, 45, 655-668.	3.5	29

#	Article	IF	CITATIONS
217	Conducting Polymerâ€lonic Liquid Electrode Arrays for Highâ€Density Surface Electromyography. Advanced Healthcare Materials, 2021, 10, e2100374.	7.6	29
218	Simultaneous monitoring of single cell and of micro-organ activity by PEDOT:PSS covered multi-electrode arrays. Materials Science and Engineering C, 2017, 81, 84-89.	7.3	28
219	Holographic time-of-flight measurements of the hole-drift mobility in a photorefractive polymer. Physical Review B, 1995, 52, R14324-R14327.	3.2	27
220	Prevention of the foreign body response to implantable medical devices by inflammasome inhibition. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2115857119.	7.1	27
221	A Glucose Sensor Based on an Organic Electrochemical Transistor Structure Using a Vapor Polymerized Poly(3,4-ethylenedioxythiophene) Layer. Japanese Journal of Applied Physics, 2010, 49, 01AE10.	1.5	26
222	Engineering hydrophilic conducting composites with enhanced ion mobility. Physical Chemistry Chemical Physics, 2014, 16, 2275-2279.	2.8	26
223	Neurospheres on Patterned PEDOT:PSS Microelectrode Arrays Enhance Electrophysiology Recordings. Advanced Biology, 2018, 2, 1700164.	3.0	26
224	Developing Next-Generation Brain Sensing Technologies—A Review. IEEE Sensors Journal, 2019, 19, 10163-10175.	4.7	26
225	Hybrid 3D/Inkjetâ€Printed Organic Neuromorphic Transistors. Advanced Materials Technologies, 2022, 7, 2000798.	5.8	26
226	Novel Bifunctional Molecule for Photorefractive Materials. Chemistry of Materials, 1997, 9, 1407-1413.	6.7	25
227	Electrotherapies for Glioblastoma. Advanced Science, 2021, 8, e2100978.	11.2	25
228	Multimodal Characterization of Neural Networks Using Highly Transparent Electrode Arrays. ENeuro, 2018, 5, ENEURO.0187-18.2018.	1.9	25
229	Orthogonal Processing: A Novel Photolithographic Patterning Method for Organic Electronics. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2009, 22, 565-569.	0.3	24
230	Organic Bioelectronic Materials and Devices. Advanced Materials, 2015, 27, 7492-7492.	21.0	24
231	Electrochemical Characterizations of four Main Redox–metabolites of <i>Pseudomonas Aeruginosa</i> . Electroanalysis, 2017, 29, 1332-1340.	2.9	24
232	Functional Connectivity of Organic Neuromorphic Devices by Global Voltage Oscillations. Advanced Intelligent Systems, 2019, 1, 1900013.	6.1	24
233	Structure of a pentacene monolayer deposited on SiO2: Role of trapped interfacial water. Journal of Applied Physics, 2006, 100, 093504.	2.5	23
234	Monitoring Intrinsic Optical Signals in Brain Tissue with Organic Photodetectors. Advanced Materials Technologies, 2018, 3, 1700333.	5.8	23

#	Article	IF	CITATIONS
235	Highly stable PEDOT:PSS electrochemical transistors. Applied Physics Letters, 2022, 120, .	3.3	23
236	Using atomic steps to induce texture in polycrystalline pentacene films. Applied Physics Letters, 2006, 89, 253116.	3.3	22
237	Flexible, organic light-pen input device with integrated display. Sensors and Actuators B: Chemical, 2008, 135, 122-127.	7.8	22
238	Fabrication of polymer-based electronic circuits using photolithography. Applied Physics Letters, 2011, 99, .	3.3	22
239	Smaller Counter Cation for Higher Transconductance in Anionic Conjugated Polyelectrolytes. Macromolecular Chemistry and Physics, 2018, 219, 1700374.	2.2	22
240	Light sensors and opto-logic gates based on organic electrochemical transistors. Materials Horizons, 2018, 5, 93-98.	12.2	22
241	Multiplexed Protein Patterns on a Photosensitive Hydrophilic Polymer Matrix. Advanced Materials, 2010, 22, 1242-1246.	21.0	20
242	Emulating homeoplasticity phenomena with organic electrochemical devices. MRS Communications, 2018, 8, 493-497.	1.8	20
243	Long-term ageing of PEDOT:PSS: wettability Study. Synthetic Metals, 2018, 238, 14-21.	3.9	19
244	Ionic Hydrogel for Accelerated Dopamine Delivery via Retrodialysis. Chemistry of Materials, 2019, 31, 7080-7084.	6.7	19
245	3D printed biomimetic cochleae and machine learning co-modelling provides clinical informatics for cochlear implant patients. Nature Communications, 2021, 12, 6260.	12.8	19
246	Numerical Modeling of an Organic Electrochemical Transistor. Biosensors, 2018, 8, 103.	4.7	18
247	Room-temperature preparation of crystalline TiO2 thin films and their applications in polymer/TiO2 hybrid optoelectronic devices. Organic Electronics, 2011, 12, 1073-1079.	2.6	17
248	Conductive Poly(3,4-Ethylenedioxythiophene) (PEDOT)-Based Polymers and Their Applications in Bioelectronics. , 2019, , 191-218.		17
249	Acid-diffusion behaviour in organic thin films and its effect on patterning. Journal of Materials Chemistry, 2009, 19, 2986.	6.7	16
250	Integration of Organic Electrochemical Transistors with Implantable Probes. Advanced Materials Technologies, 2021, 6, 2100763.	5.8	16
251	Energetic disorder at the metal-organic semiconductor interface. Physical Review B, 2006, 73,	3.2	15
252	High voltage polymer solar cell patterned with photolithography. Journal of Materials Chemistry, 2009, 19, 5394.	6.7	15

#	Article	IF	CITATIONS
253	Wearable electrochemical sensors for monitoring performance athletes. Proceedings of SPIE, 2011, , .	0.8	15
254	Nanostructured conducting polymers for stiffness controlled cell adhesion. Nanotechnology, 2016, 27, 074001.	2.6	15
255	Biodegradable Polycarbonate longels for Electrophysiology Measurements. Polymers, 2018, 10, 989.	4.5	15
256	Electrochemical impedance spectroscopy of human cochleas for modeling cochlear implant electrical stimulus spread. APL Materials, 2020, 8, 091102.	5.1	15
257	Printed Organic Electrochemical Transistors for Detecting Nutrients in Whole Plant Sap. Advanced Electronic Materials, 2022, 8, .	5.1	15
258	Facile Nanopatterning of PEDOT:PSS Thin Films. Advanced Materials Technologies, 2018, 3, 1700344.	5.8	14
259	Effect of channel thickness on noise in organic electrochemical transistors. Applied Physics Letters, 2020, 117, .	3.3	14
260	A Na ⁺ conducting hydrogel for protection of organic electrochemical transistors. Journal of Materials Chemistry B, 2018, 6, 2901-2906.	5.8	13
261	Introduction: Organic Bioelectronics. Chemical Reviews, 2022, 122, 4323-4324.	47.7	13
262	Temperature dependence of tris(2,2′-bipyridine) ruthenium (II) device characteristics. Journal of Applied Physics, 2004, 95, 4381-4384.	2.5	12
263	Transport energy in disordered organic materials. Physica Status Solidi (B): Basic Research, 2006, 243, 387-390.	1.5	12
264	Detection of fibronectin conformational changes in the extracellular matrix of live cells using plasmonic nanoplates. Journal of Materials Chemistry B, 2015, 3, 9140-9147.	5.8	12
265	The role of absorbing nonlinear optical chromophores in photorefractive polymers. Advanced Materials, 1994, 6, 574-577.	21.0	11
266	Space-charge limited current in the single-electron regime. Physical Review B, 2001, 64, .	3.2	11
267	Enhanced emission from fcc fluorescent photonic crystals. Physical Review B, 2008, 77, .	3.2	11
268	Correlation between Transient Response and Neuromorphic Behavior in Organic Electrochemical Transistors. Advanced Electronic Materials, 2022, 8, .	5.1	11
269	Electrically controlled cellular migration on a periodically micropatterned PEDOT:PSS conducting polymer platform. Journal of Applied Polymer Science, 2019, 136, 47029.	2.6	10
270	The influence of disorder on the space charge field formation in photorefractive polymers. Journal Physics D: Applied Physics, 1996, 29, 2045-2048.	2.8	9

#	Article	IF	CITATIONS
271	Transversal and longitudinal diffusion in polar disordered organic materials. Physica Status Solidi (B): Basic Research, 2006, 243, 391-394.	1.5	9
272	Organic thin-film transistors of pentacene films fabricated fromÂaÂsupersonic molecular beam source. Applied Physics A: Materials Science and Processing, 2009, 95, 29-35.	2.3	9
273	Photoelectrical imaging and characterization of point contacts in pentacene thin-film transistors. Applied Physics Letters, 2010, 97, 023308.	3.3	9
274	Materials and Device Considerations in Electrophoretic Drug Delivery Devices. Scientific Reports, 2020, 10, 7185.	3.3	9
275	Electrochemical detection of redox molecules secreted by Pseudomonas aeruginosa – Part 1: Electrochemical signatures of different strains. Bioelectrochemistry, 2021, 140, 107747.	4.6	9
276	Degradation of hole injection at the contact between a conducting polymer and a fluorene copolymer. Applied Physics Letters, 2007, 91, .	3.3	8
277	Plastic neuronal probes for implantation in cortical and subcortical areas of the rat brain. International Journal of Nanotechnology, 2012, 9, 517.	0.2	8
278	Electrochemistry provides a simple way to monitor Pseudomonas aeruginosa metabolites. , 2015, 2015, 7522-5.		8
279	Sensitive and robust chemical detection using an olfactory brain-computer interface. Biosensors and Bioelectronics, 2022, 195, 113664.	10.1	8
280	Biostack: Nontoxic Metabolite Detection from Live Tissue. Advanced Science, 2022, 9, e2101711.	11.2	8
281	Roughness-induced energetic disorder at the metal/organic interface. Physical Review B, 2006, 73, .	3.2	7
282	Electrowetting on Immersed Conducting Hydrogel. Journal of Physical Chemistry B, 2017, 121, 9947-9956.	2.6	7
283	Monitoring fluorescent calcium signals in neural cells with organic photodetectors. Journal of Materials Chemistry C, 2019, 7, 9049-9056.	5.5	7
284	Lithography and electrodes. , 2021, , 277-307.		7
285	An Instrumented Cochlea Model for the Evaluation of Cochlear Implant Electrical Stimulus Spread. IEEE Transactions on Biomedical Engineering, 2021, 68, 2281-2288.	4.2	7
286	Photonic materials for electroluminescent, laser and photovoltaic devices. Macromolecular Symposia, 1998, 125, 99-109.	0.7	6
287	Fabrication of high-mobility poly(3-hexylthiophene) transistors at ambient conditions. Organic Electronics, 2010, 11, 1507-1510.	2.6	6
288	An Electrochemical Glucose Sensor from an Organically Modified Nanocomposite of Viologen and TiO2. Journal of Nanoscience and Nanotechnology, 2010, 10, 6869-6873.	0.9	6

#	Article	IF	CITATIONS
289	Reducing Passive Drug Diffusion from Electrophoretic Drug Delivery Devices through Coâ€lon Engineering. Advanced Science, 2021, 8, 2003995.	11.2	6
290	Hybrid fabrication of multimodal intracranial implants for electrophysiology and local drug delivery. Materials Horizons, 2022, 9, 1727-1734.	12.2	6
291	Orthogonal lithography for organic electronics. Proceedings of SPIE, 2010, , .	0.8	5
292	Organic bioelectronics: general discussion. Faraday Discussions, 2014, 174, 413-428.	3.2	5
293	Spectroscopic and morphological investigation of conjugated photopolymerisable quinquethiophene liquid crystals. Current Applied Physics, 2012, 12, e59-e66.	2.4	4
294	Fully printed metabolite sensor using organic electrochemical transistor. Proceedings of SPIE, 2015, , .	0.8	4
295	PEDOT:PSS electrodes for acute experimental evaluation of vagus nerve stimulation on rodents. , 2018, 2018, 4760-4763.		4
296	Epidermal electrophysiology at scale. Nature Biomedical Engineering, 2019, 3, 165-166.	22.5	4
297	Adhesive cutaneous conducting polymer electrodes. Applied Physics Reviews, 2022, 9, .	11.3	4
298	Photorefractivity in poly(N-vinylcarbazole)-based polymer composites. Journal of Optics, 1996, 5, 631-643.	0.5	3
299	The Physics of Organic Light-Emitting Devices. Materials Research Society Symposia Proceedings, 1999, 558, 499.	0.1	3
300	Integrated reactive ion etching to pattern cross-linked hydrophilic polymer structures for protein immobilization. Applied Physics Letters, 2007, 90, 144107.	3.3	3
301	Themed issue on carbon bioelectronics. Journal of Materials Chemistry B, 2013, 1, 3727.	5.8	3
302	Electrophoretic Delivery of γ-aminobutyric Acid (GABA) into Epileptic Focus Prevents Seizures in Mice. Journal of Visualized Experiments, 2019, , .	0.3	3
303	Photorefractive polymer materials. Proceedings of SPIE, 1993, , .	0.8	2
304	Photonic polymers for the devices of the 21 st century. Macromolecular Symposia, 1997, 121, 27-34.	0.7	2
305	Development of a Compact System for In-situ X-ray Scattering Studies of Organic Thin Film Deposition. AIP Conference Proceedings, 2004, , .	0.4	2
306	Electrogenerated chemiluminescence from carbon dots. Materials Research Society Symposia Proceedings, 2011, 1284, 131.	0.1	2

#	Article	IF	CITATIONS
307	MRS Communications, Polymers and Soft Matter special issue, Part A The functionality of polymers: fundamentals to technology. MRS Communications, 2015, 5, 95-95.	1.8	2
308	Organic Electrochemical Transistors for Sensor Applications. , 2010, , 163-192.		2
309	Spinal cord bioelectronic interfaces: opportunities in neural recording and clinical challenges. Journal of Neural Engineering, 2022, 19, 021003.	3.5	2
310	Silole Derivatives with a High and Non-dispersive Electron Mobility, and a 100 % Photoluminescence Quantum Efficiency. Materials Research Society Symposia Proceedings, 2001, 665, 1.	0.1	1
311	Current-Induced Degradation in Polythiophene. Materials Research Society Symposia Proceedings, 2002, 734, 941.	0.1	1
312	Light Emitting Devices from Ionic Transition Metal Complexes. , 2005, , SMB3.		1
313	Photolithographic Patterning in Supercritical Carbon Dioxide: Application to Patterned Light-emitting Devices. , 2008, , .		1
314	Degradation of Ir(ppy)2(dtb-bpy)PF6 iTMC OLEDs. Materials Research Society Symposia Proceedings, 2009, 1154, 1.	0.1	1
315	High performance organic transistors: Percolating arrays of nanotubes functionalized with an electron deficient olefin. Applied Physics Letters, 2010, 97, 053304.	3.3	1
316	Electrochemical transistors with ionic liquids for enzymatic sensing. Proceedings of SPIE, 2011, , .	0.8	1
317	Organic electrochemical transistors for BioMEMS applications. , 2014, , .		1
318	ORGANIC BIOELECTRONICS FOR INTERFACING WITH THE BRAIN. Materials and Energy, 2016, , 345-368.	0.1	1
319	Study of the electro-responsiveness and surface texturing of PEDOT:PSS for smart MEMS interface applications. , 2017, , .		1
320	Temperature and Field Dependence in Polymer Light Emitting Diodes. Materials Research Society Symposia Proceedings, 1999, 558, 453.	0.1	0
321	Temperature and Field Dependence in Polymer Light Emitting Diodes. Materials Research Society Symposia Proceedings, 1999, 561, 195.	0.1	Ο
322	Hole injection from indium tin oxide into triphenyl diamine. , 2001, , .		0
323	Improvement in the Efficiency of Organic Light Emitting Diode Consisting of Copolymer having Hole and Electron Transporting Moieties and CsF as an Injection Material. Molecular Crystals and Liquid Crystals, 2002, 377, 77-80.	0.9	0
324	Degradation of Ru(bpy)32+-based OLEDs. Materials Research Society Symposia Proceedings, 2004, 846, DD11.11.1.	0.1	0

#	Article	IF	CITATIONS
325	Synthesis and Characterization of Electron-Deficient Pentacenes ChemInform, 2005, 36, no.	0.0	0
326	Women in Materials: a Collaborative Effort between Simmons College and the Cornell Center for Materials Research. Materials Research Society Symposia Proceedings, 2005, 909, 1.	0.1	0
327	Using Atomic Steps to Control Pentacene Crystal Orientation Texture. Materials Research Society Symposia Proceedings, 2006, 965, 1.	0.1	0
328	Degradation in iTMC OLEDs. Materials Research Society Symposia Proceedings, 2007, 1029, 1.	0.1	0
329	Electrical control of cell density and morphology on conducting polymer surfaces. , 2009, , .		0
330	Structure vs. property relationships in high mobility fused thiophene polymers. Proceedings of SPIE, 2009, , .	0.8	0
331	Evolution of the Women in Materials Program: a Collaboration between Simmons College and the Cornell Center for Materials Research. Materials Research Society Symposia Proceedings, 2009, 1233, 1.	0.1	0
332	Bright infrared LEDs based on colloidal quantum-dots. Materials Research Society Symposia Proceedings, 2013, 1509, 1.	0.1	0
333	Conducting polymer thin films as substrates for cell cultures. Materials Research Society Symposia Proceedings, 2014, 1624, 1.	0.1	0
334	Preface to the special issue: Biomaterials and Bioelectronics. APL Materials, 2015, 3, 014601.	5.1	0
335	Cell-array biosensors. , 0, , 137-154.		0
336	Preface to Special Topic: Adaptive Materials, Devices and Systems towards Unconventional Computing, Sensing, Bioelectronics and Robotics. AIP Advances, 2016, 6, 111101.	1.3	0
337	Conducting polymer scaffolds for electrical control of cellular functions (Conference) Tj ETQq1 1 0.784314 rgBT	Överloci	۶ 10 Tf 50 2
338	A DC Model for Organic Electrochemical Transistors and Analysis of Their Performance as Voltage Amplifiers. , 2021, , .		0
339	Mixed conduction in conjugated polymers devices. , 0, , .		0