
Xinbin Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4589393/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Examination of the expanding pathways for the regulation of p21 expression and activity. Cellular Signalling, 2010, 22, 1003-1012.	1.7	355
2	p63α and ΔNp63α can induce cell cycle arrest and apoptosis and differentially regulate p53 target genes. Oncogene, 2001, 20, 3193-3205.	2.6	271
3	The ferredoxin reductase gene is regulated by the p53 family and sensitizes cells to oxidative stress-induced apoptosis. Oncogene, 2002, 21, 7195-7204.	2.6	176
4	Dickkopf-1, an inhibitor of the Wnt signaling pathway, is induced by p53. Oncogene, 2000, 19, 1843-1848.	2.6	154
5	Companion animals: Translational scientist's new best friends. Science Translational Medicine, 2015, 7, 308ps21.	5.8	145
6	GPX2, a Direct Target of p63, Inhibits Oxidative Stress-induced Apoptosis in a p53-dependent Manner. Journal of Biological Chemistry, 2006, 281, 7856-7862.	1.6	143
7	Receptor tyrosine kinase EphA2 is regulated by p53-family proteins and induces apoptosis. Oncogene, 2001, 20, 6503-6515.	2.6	135
8	Histone Deacetylase 2 Modulates p53 Transcriptional Activities through Regulation of p53-DNA Binding Activity. Cancer Research, 2007, 67, 3145-3152.	0.4	132
9	Cancer theâ€~RBP'eutics–RNA-binding proteins as therapeutic targets for cancer. , 2019, 203, 107390.		125
10	RNPC1, an RNA-binding protein and a target of the p53 family, is required for maintaining the stability of the basal and stress-induced p21 transcript. Genes and Development, 2006, 20, 2961-2972.	2.7	124
11	Translational repression of p53 by RNPC1, a p53 target overexpressed in lymphomas. Genes and Development, 2011, 25, 1528-1543.	2.7	115
12	RNPC1 modulates the RNA-binding activity of, and cooperates with, HuR to regulate p21 mRNA stability. Nucleic Acids Research, 2010, 38, 2256-2267.	6.5	107
13	DEC1, a Basic Helix-Loop-Helix Transcription Factor and a Novel Target Gene of the p53 Family, Mediates p53-dependent Premature Senescence. Journal of Biological Chemistry, 2008, 283, 2896-2905.	1.6	106
14	ΔNp73β Is Active in Transactivation and Growth Suppression. Molecular and Cellular Biology, 2004, 24, 487-501.	1.1	104
15	Ferredoxin reductase is critical for p53-dependent tumor suppression via iron regulatory protein 2. Genes and Development, 2017, 31, 1243-1256.	2.7	97
16	The Activation Domains, the Proline-rich Domain, and the C-terminal Basic Domain in p53 Are Necessary for Acetylation of Histones on the Proximal p21 Promoter and Interaction with p300/CREB-binding Protein. Journal of Biological Chemistry, 2003, 278, 17557-17565.	1.6	95
17	Definition of the p53 Functional Domains Necessary for Inducing Apoptosis. Journal of Biological Chemistry, 2000, 275, 39927-39934.	1.6	94
18	DNA Polymerase Î-, the Product of the Xeroderma Pigmentosum Variant Gene and a Target of p53, Modulates the DNA Damage Checkpoint and p53 Activation. Molecular and Cellular Biology, 2006, 26, 1398-1413.	1.1	94

#	Article	IF	CITATIONS
19	The Unique NH2-terminally Deleted (ΔN) Residues, the PXXP Motif, and the PPXY Motif Are Required for the Transcriptional Activity of the ΔN Variant of p63. Journal of Biological Chemistry, 2006, 281, 2533-2542.	1.6	93
20	p53 induces TAP1 and enhances the transport of MHC class I peptides. Oncogene, 1999, 18, 7740-7747.	2.6	91
21	p73 is transcriptionally regulated by DNA damage, p53, and p73. Oncogene, 2001, 20, 769-774.	2.6	86
22	RNPC1, an RNA-binding protein and a target of the p53 family, regulates p63 expression through mRNA stability. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 9614-9619.	3.3	83
23	RORÎ ³ is a targetable master regulator of cholesterol biosynthesis in a cancer subtype. Nature Communications, 2019, 10, 4621.	5.8	81
24	Mutant p53 Disrupts MCF-10A Cell Polarity in Three-dimensional Culture via Epithelial-to-mesenchymal Transitions. Journal of Biological Chemistry, 2011, 286, 16218-16228.	1.6	73
25	Rbm24, a target of p53, is necessary for proper expression of p53 and heart development. Cell Death and Differentiation, 2018, 25, 1118-1130.	5.0	70
26	Myosin VI Is a Mediator of the p53-Dependent Cell Survival Pathway. Molecular and Cellular Biology, 2006, 26, 2175-2186.	1.1	66
27	Role of Pirh2 in Mediating the Regulation of p53 and c-Myc. PLoS Genetics, 2011, 7, e1002360.	1.5	65
28	The cyclin-dependent kinase inhibitor p21 is regulated by RNA-binding protein PCBP4 via mRNA stability. Nucleic Acids Research, 2011, 39, 213-224.	6.5	64
29	Rbm24, an RNA-binding Protein and a Target of p53, Regulates p21 Expression via mRNA Stability. Journal of Biological Chemistry, 2014, 289, 3164-3175.	1.6	62
30	Mice deficient in Rbm38, a target of the p53 family, are susceptible to accelerated aging and spontaneous tumors. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 18637-18642.	3.3	59
31	Suppression of Inhibitor of Differentiation 2, a Target of Mutant p53, Is Required for Gain-of-Function Mutations. Cancer Research, 2008, 68, 6789-6796.	0.4	58
32	Pirh2 E3 Ubiquitin Ligase Targets DNA Polymerase Eta for 20S Proteasomal Degradation. Molecular and Cellular Biology, 2010, 30, 1041-1048.	1.1	54
33	RNA-Binding Protein RBM24 Regulates p63 Expression via mRNA Stability. Molecular Cancer Research, 2014, 12, 359-369.	1.5	51
34	p73 Expression Is Regulated by RNPC1, a Target of the p53 Family, via mRNA Stability. Molecular and Cellular Biology, 2012, 32, 2336-2348.	1.1	50
35	Pirh2 RINGâ€finger E3 ubiquitin ligase: Its role in tumorigenesis and cancer therapy. FEBS Letters, 2012, 586, 1397-1402.	1.3	48
36	Glycogen synthase kinase 3 promotes p53 mRNA translation via phosphorylation of RNPC1. Genes and Development, 2013, 27, 2246-2258.	2.7	48

#	Article	IF	CITATIONS
37	Pirh2 E3 Ubiquitin Ligase Monoubiquitinates DNA Polymerase Eta To Suppress Translesion DNA Synthesis. Molecular and Cellular Biology, 2011, 31, 3997-4006.	1.1	47
38	Aquaporin 3, a glycerol and water transporter, is regulated by p73 of the p53 family. FEBS Letters, 2001, 489, 4-7.	1.3	46
39	Poly (C)-Binding Protein 1 Regulates p63 Expression through mRNA Stability. PLoS ONE, 2013, 8, e71724.	1.1	46
40	The C-terminal Sterile α Motif and the Extreme C Terminus Regulate the Transcriptional Activity of the α Isoform of p73. Journal of Biological Chemistry, 2005, 280, 20111-20119.	1.6	45
41	DNA polymerase eta is targeted by Mdm2 for polyubiquitination and proteasomal degradation in response to ultraviolet irradiation. DNA Repair, 2012, 11, 177-184.	1.3	45
42	p73 cooperates with DNA damage agents to induce apoptosis in MCF7 cells in a p53-dependent manner. Oncogene, 2001, 20, 4050-4057.	2.6	44
43	Differentiated embryo-chondrocyte expressed gene 1 regulates p53-dependent cell survival versus cell death through macrophage inhibitory cytokine-1. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 11300-11305.	3.3	44
44	Pirh2 E3 Ubiquitin Ligase Modulates Keratinocyte Differentiation through p63. Journal of Investigative Dermatology, 2013, 133, 1178-1187.	0.3	44
45	Arsenic Trioxide Reactivates Proteasome-Dependent Degradation of Mutant p53 Protein in Cancer Cells in Part via Enhanced Expression of Pirh2 E3 Ligase. PLoS ONE, 2014, 9, e103497.	1.1	42
46	The Epithelial Cell Transforming Sequence 2, a Guanine Nucleotide Exchange Factor for Rho GTPases, Is Repressed by p53 via Protein Methyltransferases and Is Required for G1-S Transition. Cancer Research, 2006, 66, 6271-6279.	0.4	41
47	Posttranscriptional Regulation of p53 and its Targets by RNABinding Proteins. Current Molecular Medicine, 2008, 8, 845-849.	0.6	40
48	Ninjurin 1 has two opposing functions in tumorigenesis in a p53-dependent manner. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 11500-11505.	3.3	40
49	Ninjurin1, a target of p53, regulates p53 expression and p53-dependent cell survival, senescence, and radiation-induced mortality. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 9362-9367.	3.3	39
50	p53 tumor suppressor and iron homeostasis. FEBS Journal, 2019, 286, 620-629.	2.2	39
51	The p73 Tumor Suppressor Is Targeted by Pirh2 RING Finger E3 Ubiquitin Ligase for the Proteasome-dependent Degradation. Journal of Biological Chemistry, 2011, 286, 35388-35395.	1.6	38
52	Cyclin G. Developmental Cell, 2002, 2, 518-519.	3.1	37
53	Establishment of a Dog Model for the p53 Family Pathway and Identification of a Novel Isoform of p21 Cyclin-Dependent Kinase Inhibitor. Molecular Cancer Research, 2009, 7, 67-78.	1.5	35
54	Silencing the epigenetic silencer KDM4A for TRAIL and DR5 simultaneous induction and antitumor therapy. Cell Death and Differentiation, 2016, 23, 1886-1896.	5.0	35

#	Article	IF	CITATIONS
55	A PolH Transcript with a Short 3′UTR Enhances PolH Expression and Mediates Cisplatin Resistance. Cancer Research, 2019, 79, 3714-3724.	0.4	35
56	The RNA-binding Protein RNPC1 Stabilizes the mRNA Encoding the RNA-binding Protein HuR and Cooperates with HuR to Suppress Cell Proliferation. Journal of Biological Chemistry, 2012, 287, 14535-14544.	1.6	33
57	DEC1 Coordinates with HDAC8 to Differentially Regulate TAp73 and ΔNp73 Expression. PLoS ONE, 2014, 9, e84015.	1.1	29
58	Disruption of the Rbm38-eIF4E Complex with a Synthetic Peptide Pep8 Increases p53 Expression. Cancer Research, 2019, 79, 807-818.	0.4	29
59	Syntaxin 6, a Regulator of the Protein Trafficking Machinery and a Target of the p53 Family, Is Required for Cell Adhesion and Survival. Journal of Biological Chemistry, 2008, 283, 30689-30698.	1.6	28
60	Characterization of Functional Domains Necessary for Mutant p53 Gain of Function. Journal of Biological Chemistry, 2010, 285, 14229-14238.	1.6	28
61	ΔNp63, a Target of DEC1 and Histone Deacetylase 2, Modulates the Efficacy of Histone Deacetylase Inhibitors in Growth Suppression and Keratinocyte Differentiation. Journal of Biological Chemistry, 2011, 286, 12033-12041.	1.6	28
62	Mammary Epithelial Cell Polarity Is Regulated Differentially by p73 Isoforms via Epithelial-to-mesenchymal Transition. Journal of Biological Chemistry, 2012, 287, 17746-17753.	1.6	27
63	RNPC1, an RNA-binding Protein and a p53 Target, Regulates Macrophage Inhibitory Cytokine-1 (MIC-1) Expression through mRNA Stability. Journal of Biological Chemistry, 2013, 288, 23680-23686.	1.6	27
64	Genetic Ablation of <i>Rbm38</i> Promotes Lymphomagenesis in the Context of Mutant p53 by Downregulating PTEN. Cancer Research, 2018, 78, 1511-1521.	0.4	27
65	<scp>FDXR</scp> regulates <scp>TP73</scp> tumor suppressor via <scp>IRP2</scp> to modulate aging and tumor suppression. Journal of Pathology, 2020, 251, 284-296.	2.1	27
66	Isolation and Characterization of Fourteen Novel Putative and Nine Known Target Genes of the p53 Family. Cancer Biology and Therapy, 2003, 2, 56-63.	1.5	24
67	ΔNp73 Modulates Nerve Growth Factor-Mediated Neuronal Differentiation through Repression of TrkA. Molecular and Cellular Biology, 2007, 27, 3868-3880.	1.1	23
68	Mutant p53 antagonizes p63/p73-mediated tumor suppression via Notch1. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 24259-24267.	3.3	23
69	PUMA Cooperates with p21 to Regulate Mammary Epithelial Morphogenesis and Epithelial-To-Mesenchymal Transition. PLoS ONE, 2013, 8, e66464.	1.1	23
70	Hypoxia-inducible factor 1 alpha is regulated by RBM38, a RNA-binding protein and a p53 family target, via mRNA translation. Oncotarget, 2015, 6, 305-316.	0.8	21
71	RNA-binding Protein PCBP2 Regulates p73 Expression and p73-dependent Antioxidant Defense. Journal of Biological Chemistry, 2016, 291, 9629-9637.	1.6	19
72	TAp73 Protein Stability Is Controlled by Histone Deacetylase 1 via Regulation of Hsp90 Chaperone Function. Journal of Biological Chemistry, 2013, 288, 7727-7737.	1.6	17

#	Article	IF	CITATIONS
73	Arsenic Suppresses Cell Survival via Pirh2-mediated Proteasomal Degradation of ΔNp63 Protein. Journal of Biological Chemistry, 2013, 288, 2907-2913.	1.6	17
74	DNA polymerase η is regulated by poly(rC)-binding protein 1 via mRNA stability. Biochemical Journal, 2014, 464, 377-386.	1.7	16
75	The Rbm38-p63 feedback loop is critical for tumor suppression and longevity. Oncogene, 2018, 37, 2863-2872.	2.6	16
76	Clusterin, a Novel DEC1 Target, Modulates DNA Damage–Mediated Cell Death. Molecular Cancer Research, 2018, 16, 1641-1651.	1.5	16
77	The p53 Family: A Role in Lipid and Iron Metabolism. Frontiers in Cell and Developmental Biology, 2021, 9, 715974.	1.8	15
78	p73 expression is regulated by ribosomal protein RPL26 through mRNA translation and protein stability. Oncotarget, 2016, 7, 78255-78268.	0.8	15
79	Mice deficient in poly(C)-binding protein 4 are susceptible to spontaneous tumors through increased expression of ZFP871 that targets p53 for degradation. Genes and Development, 2016, 30, 522-534.	2.7	14
80	Modulation of the p53 family network by RNA-binding proteins. Translational Cancer Research, 2016, 5, 676-684.	0.4	12
81	Serine 195 phosphorylation in the RNA-binding protein Rbm38 increases p63 expression by modulating Rbm38's interaction with the Ago2–miR203 complex. Journal of Biological Chemistry, 2019, 294, 2449-2459.	1.6	12
82	Mdm2 is a target and mediator of IRP2 in cell growth control. FASEB Journal, 2020, 34, 2301-2311.	0.2	12
83	P73 tumor suppressor and its targets, p21 and PUMA, are required for madin-darby canine kidney cell morphogenesis by maintaining an appropriate level of epithelial to mesenchymal transition. Oncotarget, 2015, 6, 13994-14004.	0.8	12
84	Ferredoxin reductase and p53 are necessary for lipid homeostasis and tumor suppression through the ABCA1–SREBP pathway. Oncogene, 2022, 41, 1718-1726.	2.6	12
85	HuR Is Necessary for Mammary Epithelial Cell Proliferation and Polarity at Least in Part via ΔNp63. PLoS ONE, 2012, 7, e45336.	1.1	11
86	lron regulatory protein 2 is a suppressor of mutant p53 in tumorigenesis. Oncogene, 2019, 38, 6256-6269.	2.6	10
87	PABPN1, a Target of p63, Modulates Keratinocyte Differentiation through Regulation of p63α mRNA Translation. Journal of Investigative Dermatology, 2020, 140, 2166-2177.e6.	0.3	10
88	Regulation of Mdm2 mRNA Stability by RNA-binding Protein RNPC1. Oncotarget, 2013, 4, 1121-1122.	0.8	9
89	TAp63γ and ΔNp63γ are regulated by RBM38 via mRNA stability and have an opposing function in growth suppression. Oncotarget, 2017, 8, 78327-78339.	0.8	9
90	Myosin VI Is Differentially Regulated by DNA Damage in p53- and Cell Type-dependent Manners. Journal of Biological Chemistry, 2010, 285, 27159-27166.	1.6	8

#	ARTICLE	IF	CITATIONS
91	DEC1 and MIC-1. Cell Cycle, 2012, 11, 3525-3526.	1.3	8
92	Iron Regulatory Protein 2 Exerts its Oncogenic Activities by Suppressing TAp63 Expression. Molecular Cancer Research, 2020, 18, 1039-1049.	1.5	8
93	Mutant p53 Cooperates with Knockdown of Endogenous Wild-Type p53 to Disrupt Tubulogenesis in Madin-Darby Canine Kidney Cells. PLoS ONE, 2013, 8, e85624.	1.1	6
94	Fine-tuning p53 activity by modulating the interaction between eukaryotic translation initiation factor eIF4E and RNA-binding protein RBM38. Genes and Development, 2021, 35, 542-555.	2.7	6
95	Olaparib-Induced Senescence Is Bypassed through G2–M Checkpoint Override in Olaparib-Resistant Prostate Cancer. Molecular Cancer Therapeutics, 2022, 21, 677-685.	1.9	6
96	Mice Deficient in the RNA-Binding Protein Zfp871 Are Prone to Early Death and Steatohepatitis in Part through the p53–Mdm2 Axis. Molecular Cancer Research, 2021, 19, 1751-1762.	1.5	5
97	Microglia-Derived Olfactomedin-like 3 Promotes Pro-Tumorigenic Microglial Function and Malignant Features of Glioma Cells. International Journal of Molecular Sciences, 2021, 22, 13052.	1.8	5
98	A new function for p53 tetramerization domain in cell fate control. Cell Cycle, 2016, 15, 2854-2855.	1.3	4
99	Novel role of Wip1 in p53-mediated cell homeostasis under non-stress conditions. Cell Cycle, 2011, 10, 3235-3235.	1.3	3
100	Survivin Expression Is Differentially Regulated by a Selective Cross-talk between RBM38 and miRNAs let-7b or miR-203a. Cancer Research, 2021, 81, 1827-1839.	0.4	3
101	The proline-rich domain of p53 is required for cooperation with anti-neoplastic agents to promote apoptosis of tumor cells. Oncogene, 2002, 21, 9-21.	2.6	2
102	Optimization of eIF4E-Binding Peptide Pep8 to Disrupt the RBM38-eIF4E Complex for Induction of p53 and Tumor Suppression. Frontiers in Oncology, 2022, 12, 893062.	1.3	2
103	p73α1, a p73 C-terminal isoform, regulates tumor suppression and the inflammatory response via Notch1. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	2
104	Measuring Translation Efficiency by RNA Immunoprecipitation of Translation Initiation Factors. Methods in Molecular Biology, 2021, 2267, 73-79.	0.4	1
105	Small Proline-Rich Protein 2A and 2D Are Regulated by the RBM38-p73 Axis and Associated with p73-Dependent Suppression of Chronic Inflammation. Cancers, 2021, 13, 2829.	1.7	1
106	Abstract 2988: Loss of Rbm38 cooperates with mutant p53 to promote lymphomagenesis through downregulation of Pten. , 2018, , .		1