Jianzhong Wu

List of Publications by Citations

Source: https://exaly.com/author-pdf/4589366/jianzhong-wu-publications-by-citations.pdf

Version: 2024-04-20

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

 229
 9,534
 49
 89

 papers
 citations
 h-index
 g-index

 240
 10,478
 5.1
 6.66

 ext. papers
 ext. citations
 avg, IF
 L-index

#	Paper	IF	Citations
229	Anti-icing superhydrophobic coatings. <i>Langmuir</i> , 2009 , 25, 12444-8	4	1115
228	Structures of hard-sphere fluids from a modified fundamental-measure theory. <i>Journal of Chemical Physics</i> , 2002 , 117, 10156-10164	3.9	550
227	Density functional theory for chemical engineering: From capillarity to soft materials. <i>AICHE Journal</i> , 2006 , 52, 1169-1193	3.6	299
226	Density-functional theory for complex fluids. <i>Annual Review of Physical Chemistry</i> , 2007 , 58, 85-112	15.7	287
225	Density functional theory for inhomogeneous mixtures of polymeric fluids. <i>Journal of Chemical Physics</i> , 2002 , 117, 2368-2376	3.9	284
224	Oscillation of capacitance inside nanopores. <i>Nano Letters</i> , 2011 , 11, 5373-7	11.5	240
223	Asphaltene precipitation in crude oils: Theory and experiments. <i>AICHE Journal</i> , 2004 , 50, 2552-2570	3.6	204
222	Density-functional theory of spherical electric double layers and zeta potentials of colloidal particles in restricted-primitive-model electrolyte solutions. <i>Journal of Chemical Physics</i> , 2004 , 120, 722	3 ³ 333	169
221	A fundamental-measure theory for inhomogeneous associating fluids. <i>Journal of Chemical Physics</i> , 2002 , 116, 7094-7103	3.9	156
220	Solvent Effect on the Pore-Size Dependence of an Organic Electrolyte Supercapacitor. <i>Journal of Physical Chemistry Letters</i> , 2012 , 3, 1727-31	6.4	151
219	Molecular-thermodynamic framework for asphaltene-oil equilibria. <i>AICHE Journal</i> , 1998 , 44, 1188-1199	3.6	148
218	Phase behavior of thermally responsive microgel colloids. <i>Physical Review Letters</i> , 2003 , 90, 048304	7.4	148
217	A classical density functional theory for interfacial layering of ionic liquids. <i>Soft Matter</i> , 2011 , 7, 11222	3.6	143
216	Interaction between like-charged colloidal spheres in electrolyte solutions. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 1998 , 95, 15169-72	11.5	138
215	Phase Equilibria for Systems Containing Hydrocarbons, Water, and Salt: An Extended Peng R obinson Equation of State. <i>Industrial & Engineering Chemistry Research</i> , 1998 , 37, 1634-1643	3.9	123
214	Computational Insights into Materials and Interfaces for Capacitive Energy Storage. <i>Advanced Science</i> , 2017 , 4, 1700059	13.6	122
213	Density functional theory for differential capacitance of planar electric double layers in ionic liquids. <i>Chemical Physics Letters</i> , 2011 , 504, 153-158	2.5	112

(2005-2004)

212	Modeling inhomogeneous van der Waals fluids using an analytical direct correlation function. <i>Physical Review E</i> , 2004 , 70, 011201	2.4	109
211	Enhancing the Capacitive Performance of Electric Double-Layer Capacitors with Ionic Liquid Mixtures. <i>ACS Energy Letters</i> , 2016 , 1, 21-26	20.1	107
210	Microscopic Insights into the Electrochemical Behavior of Nonaqueous Electrolytes in Electric Double-Layer Capacitors. <i>Journal of Physical Chemistry Letters</i> , 2013 , 4, 1260-7	6.4	95
209	Assembly of supertetrahedral T5 copper-indium sulfide clusters into a super-supertetrahedron of infinite order. <i>Journal of the American Chemical Society</i> , 2010 , 132, 3283-5	16.4	93
208	Quantum Effects on the Capacitance of Graphene-Based Electrodes. <i>Journal of Physical Chemistry C</i> , 2015 , 119, 22297-22303	3.8	92
207	Interparticle Potential and the Phase Behavior of Temperature-Sensitive Microgel Dispersions. <i>Macromolecules</i> , 2003 , 36, 440-448	5.5	86
206	Photo-induced ultrafast active ion transport through graphene oxide membranes. <i>Nature Communications</i> , 2019 , 10, 1171	17.4	82
205	Selective Charging Behavior in an Ionic Mixture Electrolyte-Supercapacitor System for Higher Energy and Power. <i>Journal of the American Chemical Society</i> , 2017 , 139, 18681-18687	16.4	76
204	Molecular thermodynamics of asphaltene precipitation in reservoir fluids. AICHE Journal, 2000, 46, 197	-250 6	76
203	Density functional theory for semiflexible and cyclic polyatomic fluids. <i>Journal of Chemical Physics</i> , 2004 , 121, 4210-20	3.9	75
202	Density functional study of the electric double layer formed by a high density electrolyte. <i>Journal of Physical Chemistry B</i> , 2011 , 115, 12911-4	3.4	74
201	A Site Density Functional Theory for Water: Application to Solvation of Amino Acid Side Chains. Journal of Chemical Theory and Computation, 2013 , 9, 1896-908	6.4	67
200	Density functional theory for polyelectrolytes near oppositely charged surfaces. <i>Physical Review Letters</i> , 2006 , 96, 048302	7.4	67
199	Self-diffusion of methane in single-walled carbon nanotubes at sub- and supercritical conditions. <i>Langmuir</i> , 2004 , 20, 3759-65	4	67
198	Density functional theory for planar electric double layers: closing the gap between simple and polyelectrolytes. <i>Journal of Physical Chemistry B</i> , 2006 , 110, 7473-84	3.4	66
197	Extended test-particle method for predicting the inter- and intramolecular correlation functions of polymeric fluids. <i>Journal of Chemical Physics</i> , 2003 , 118, 3835-3842	3.9	63
196	Density-functional theory for the structures and thermodynamic properties of highly asymmetric electrolyte and neutral component mixtures. <i>Physical Review E</i> , 2004 , 70, 031109	2.4	60
195	Modeling the selectivity of activated carbons for efficient separation of hydrogen and carbon dioxide. <i>Carbon</i> , 2005 , 43, 1364-1370	10.4	60

194	Surface forces between telechelic brushes revisited: the origin of a weak attraction. <i>Langmuir</i> , 2006 , 22, 2712-8	4	59
193	Unusual effects of solvent polarity on capacitance for organic electrolytes in a nanoporous electrode. <i>Nanoscale</i> , 2014 , 6, 5545-50	7.7	58
192	Density-functional theory and Monte Carlo simulation for the surface structure and correlation functions of freely jointed Lennard-Jones polymeric fluids. <i>Journal of Chemical Physics</i> , 2005 , 122, 1747	0 8 ⁹	58
191	Microstructure of Block Copolymers near Selective Surfaces: Theoretical Predictions and Configurational-Bias Monte Carlo Simulation. <i>Macromolecules</i> , 2005 , 38, 971-978	5.5	57
190	Volume transition and internal structures of small poly(N-isopropylacrylamide) microgels. <i>Journal of Polymer Science, Part B: Polymer Physics</i> , 2005 , 43, 849-860	2.6	57
189	A Generic Model for Electric Double Layers in Porous Electrodes. <i>Journal of Physical Chemistry C</i> , 2016 , 120, 8704-8710	3.8	57
188	Growth Mechanism of Highly Branched Titanium Dioxide Nanowires via Oriented Attachment. <i>Crystal Growth and Design</i> , 2013 , 13, 422-428	3.5	56
187	Structure and Swelling of Grafted Polyelectrolytes: Predictions from a Nonlocal Density Functional Theory. <i>Macromolecules</i> , 2007 , 40, 334-343	5.5	56
186	New theoretical method for rapid prediction of solvation free energy in water. <i>Journal of Physical Chemistry B</i> , 2011 , 115, 6971-5	3.4	55
185	A density-functional theory for bulk and inhomogeneous Lennard-Jones fluids from the energy route. <i>Journal of Chemical Physics</i> , 2003 , 119, 7388-7397	3.9	55
184	Thermodynamic basis for the genome to capsid charge relationship in viral encapsidation. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2011 , 108, 16986-91	11.5	53
183	Protein refolding assisted by periodic mesoporous organosilicas. <i>Langmuir</i> , 2007 , 23, 5735-9	4	53
182	Crystallization kinetics of thermosensitive colloids probed by transmission spectroscopy. <i>Langmuir</i> , 2004 , 20, 8858-64	4	51
181	Structures and correlation functions of multicomponent and polydisperse hard-sphere mixtures from a density functional theory. <i>Journal of Chemical Physics</i> , 2004 , 121, 1535-41	3.9	51
180	Kinetic Charging Inversion in Ionic Liquid Electric Double Layers. <i>Journal of Physical Chemistry Letters</i> , 2014 , 5, 2195-200	6.4	48
179	Forces between aqueous nonuniformly charged colloids from molecular simulation. <i>Journal of Chemical Physics</i> , 2002 , 116, 7733-7743	3.9	48
178	Revisiting density functionals for the primitive model of electric double layers. <i>Journal of Chemical Physics</i> , 2014 , 140, 044714	3.9	47
177	Osmotic pressures of aqueous bovine serum albumin solutions at high ionic strength. <i>Fluid Phase Equilibria</i> , 1999 , 155, 139-154	2.5	46

(2016-2005)

176	Vapor Liquid Equilibria and Interfacial Tensions of Associating Fluids within a Density Functional Theory. <i>Industrial & Engineering Chemistry Research</i> , 2005 , 44, 1120-1128	3.9	45	
175	Molecular Simulation of Novel Carbonaceous Materials for Hydrogen Storage. <i>Nano Letters</i> , 2004 , 4, 1489-1492	11.5	43	
174	Hunting ionic liquids with large electrochemical potential windows. AICHE Journal, 2019, 65, 804-810	3.6	43	
173	Polyelectrolyte complex coacervation: Effects of concentration asymmetry. <i>Journal of Chemical Physics</i> , 2018 , 149, 163303	3.9	42	
172	Salting-Out and Salting-In of Polyelectrolyte Solutions: A Liquid-State Theory Study. <i>Macromolecules</i> , 2016 , 49, 9720-9730	5.5	42	
171	Mixed Ionic Liquid Improves Electrolyte Dynamics in Supercapacitors. <i>Journal of Physical Chemistry C</i> , 2018 , 122, 10476-10481	3.8	40	
170	Effect of the range of attractive interactions on crystallization, metastable phase transition, and percolation in colloidal dispersions. <i>Physical Review E</i> , 2003 , 68, 011403	2.4	40	
169	Orientation-Averaged Pair Potentials between Dipolar Proteins or Colloids. <i>Journal of Physical Chemistry B</i> , 2002 , 106, 2714-2720	3.4	40	
168	A hybrid method for predicting the microstructure of polymers with complex architecture: combination of single-chain simulation with density functional theory. <i>Journal of Chemical Physics</i> , 2006 , 124, 164904	3.9	39	
167	Layering, condensation, and evaporation of short chains in narrow slit pores. <i>Journal of Chemical Physics</i> , 2005 , 122, 224701	3.9	39	
166	Density Functional Methods for Fast Screening of Metal Drganic Frameworks for Hydrogen Storage. <i>Journal of Physical Chemistry C</i> , 2015 , 119, 5374-5385	3.8	38	
165	Monte Carlo simulation for the double layer structure of an ionic liquid using a dimer model: a comparison with the density functional theory. <i>Journal of Physical Chemistry B</i> , 2012 , 116, 10364-70	3.4	38	
164	Electrostatic origins of polyelectrolyte adsorption: Theory and Monte Carlo simulations. <i>Journal of Chemical Physics</i> , 2010 , 133, 044906	3.9	38	
163	Pairwise-additive hydrophobic effect for alkanes in water. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2008 , 105, 9512-5	11.5	38	
162	Time-dependent density functional theory for ion diffusion in electrochemical systems. <i>Journal of Physics Condensed Matter</i> , 2014 , 26, 284102	1.8	37	
161	Interaction between oppositely charged micelles or globular proteins. <i>Physical Review E</i> , 2000 , 62, 527	3- 8 .Q	37	
160	High-Throughput Prediction of the Hydration Free Energies of Small Molecules from a Classical Density Functional Theory. <i>Journal of Physical Chemistry Letters</i> , 2013 , 4, 3687-3691	6.4	36	
159	Chemical and Radiation Stability of Ionic Liquids: A Computational Screening Study. <i>Journal of Physical Chemistry C</i> , 2016 , 120, 27757-27767	3.8	35	

158	Ionic effects in collapse of polyelectrolyte brushes. <i>Journal of Physical Chemistry B</i> , 2008 , 112, 7713-20	3.4	35
157	Structural transitions of confined model proteins: molecular dynamics simulation and experimental validation. <i>Biophysical Journal</i> , 2006 , 90, 3224-38	2.9	35
156	Insights from machine learning of carbon electrodes for electric double layer capacitors. <i>Carbon</i> , 2020 , 157, 147-152	10.4	34
155	Excess-entropy scaling for gas diffusivity in nanoporous materials. <i>Langmuir</i> , 2013 , 29, 12997-3002	4	33
154	Osmotic pressure and packaging structure of caged DNA. <i>Biophysical Journal</i> , 2008 , 94, 737-46	2.9	33
153	Time-dependent density functional theory for the charging kinetics of electric double layer containing room-temperature ionic liquids. <i>Journal of Chemical Physics</i> , 2016 , 145, 204707	3.9	33
152	A comprehensive analysis of the BET area for nanoporous materials. <i>AICHE Journal</i> , 2018 , 64, 286-293	3.6	32
151	Electrochemical properties of the double layer of an ionic liquid using a dimer model electrolyte and density functional theory. <i>Journal of Physical Chemistry B</i> , 2012 , 116, 2520-5	3.4	32
150	A modified fundamental measure theory for spherical particles in microchannels. <i>Journal of Chemical Physics</i> , 2003 , 119, 2288-2295	3.9	32
149	Surface-induced phase transitions in ultrathin films of block copolymers. <i>Journal of Chemical Physics</i> , 2005 , 122, 194703	3.9	31
148	Nitrogen-doped porous aromatic frameworks for enhanced CO2 adsorption. <i>Journal of Colloid and Interface Science</i> , 2015 , 438, 191-195	9.3	30
147	Application of density functional theory to study the double layer of an electrolyte with an explicit dimer model for the solvent. <i>Journal of Physical Chemistry B</i> , 2012 , 116, 11356-61	3.4	30
146	Density functional theory for predicting polymeric forces against surface fouling. <i>Soft Matter</i> , 2010 , 6, 4631	3.6	30
145	Classical density functional theory for methane adsorption in metal-organic framework materials. <i>AICHE Journal</i> , 2015 , 61, 3012-3021	3.6	29
144	The tail effect on the shape of an electrical double layer differential capacitance curve. <i>Journal of Chemical Physics</i> , 2013 , 138, 144704	3.9	29
143	Toward a Quantitative Theory of Ultrasmall Liquid Droplets and Vaporliquid Nucleation. <i>Industrial & Droplets and Vaporliquid Nucleation</i> . <i>Industrial & Droplets and Vaporliquid Nucleation</i> .	3.9	29
142	A self-consistent approach for modelling the interfacial properties and phase diagrams of Yukawa, Lennard-Jones and square-well fluids. <i>Molecular Physics</i> , 2004 , 102, 1479-1488	1.7	29
141	Boosting the Performance of Ionic-Liquid-Based Supercapacitors with Polar Additives. <i>Journal of Physical Chemistry C</i> , 2016 , 120, 24041-24047	3.8	29

(2004-2015)

140	Thermodynamic and Structural Evidence for Reduced Hydrogen Bonding among Water Molecules near Small Hydrophobic Solutes. <i>Journal of Physical Chemistry B</i> , 2015 , 119, 12108-16	3.4	28	
139	Impurity Effects on Charging Mechanism and Energy Storage of Nanoporous Supercapacitors. Journal of Physical Chemistry C, 2017 , 121, 14066-14072	3.8	27	
138	Influence of anisotropic ion shape on structure and capacitance of an electric double layer: a Monte Carlo and density functional study. <i>Journal of Chemical Physics</i> , 2013 , 139, 054703	3.9	27	
137	Communication: Long-range angular correlations in liquid water. <i>Journal of Chemical Physics</i> , 2013 , 139, 041103	3.9	27	
136	Density functional theory for a primitive model of nanoparticle-block copolymer mixtures. <i>Journal of Chemical Physics</i> , 2007 , 126, 144912	3.9	27	
135	Theoretical study of cooperativity in multivalent polymers for colloidal stabilization. <i>Langmuir</i> , 2005 , 21, 9786-91	4	26	
134	A theoretical study for nanoparticle partitioning in the lamellae of diblock copolymers. <i>Journal of Chemical Physics</i> , 2008 , 128, 074901	3.9	25	
133	Non-Negligible Roles of Pore Size Distribution on Electroosmotic Flow in Nanoporous Materials. <i>ACS Nano</i> , 2019 , 13, 8185-8192	16.7	24	
132	A contact-corrected density functional theory for electrolytes at an interface. <i>Physical Chemistry Chemical Physics</i> , 2014 , 16, 3934-8	3.6	24	
131	Differential Heat of Adsorption and Isosteres. <i>Langmuir</i> , 2017 , 33, 996-1003	4	23	
130	Molecular Theory for Electrokinetic Transport in pH-Regulated Nanochannels. <i>Journal of Physical Chemistry Letters</i> , 2014 , 5, 3015-20	6.4	23	
129	Electrostatic regulation of genome packaging in human hepatitis B virus. <i>Biophysical Journal</i> , 2009 , 96, 3065-73	2.9	23	
128	Graphene oxide enabled long-term enzymatic transesterification in an anhydrous gas flux. <i>Nature Communications</i> , 2019 , 10, 2684	17.4	22	
127	Lectin corona enhances enzymatic catalysis on the surface of magnetic nanoparticles. <i>Biochemical Engineering Journal</i> , 2018 , 129, 26-32	4.2	22	
126	Density functional theory study of the capacitance of single file ions in a narrow cylinder. <i>Journal of Colloid and Interface Science</i> , 2015 , 449, 130-5	9.3	22	
125	Melting Kinetics of Thermally Responsive Microgel Crystals. <i>Macromolecules</i> , 2007 , 40, 9544-9548	5.5	22	
124	Potential distribution theorem for the polymer-induced depletion between colloidal particles. <i>Journal of Chemical Physics</i> , 2007 , 126, 144904	3.9	22	
123	Overcharging of nanoparticles in electrolyte solutions. <i>Langmuir</i> , 2004 , 20, 7333-8			

122	A new perturbation method for electrolyte solutions based on MSA. <i>Fluid Phase Equilibria</i> , 1994 , 101, 121-136	2.5	22
121	Can ionophobic nanopores enhance the energy storage capacity of electric-double-layer capacitors containing nonaqueous electrolytes?. <i>Journal of Physics Condensed Matter</i> , 2016 , 28, 414005	1.8	20
120	Molecular density functional theory for multiscale modeling of hydration free energy. <i>Chemical Engineering Science</i> , 2015 , 126, 370-382	4.4	19
119	Ionic Liquid Mixture Expands the Potential Window and Capacitance of a Supercapacitor in Tandem. <i>Journal of Physical Chemistry C</i> , 2018 , 122, 18304-18310	3.8	19
118	Ion association at discretely-charged dielectric interfaces: Giant charge inversion. <i>Journal of Chemical Physics</i> , 2017 , 147, 024703	3.9	19
117	A theoretical model for the dynamic structure of hepatitis B nucleocapsid. <i>Biophysical Journal</i> , 2011 , 101, 2476-84	2.9	19
116	Membrane-confined liquid-liquid phase separation toward artificial organelles. <i>Science Advances</i> , 2021 , 7,	14.3	19
115	Capacitive Energy Extraction by Few-Layer Graphene Electrodes. <i>Journal of Physical Chemistry C</i> , 2017 , 121, 14010-14018	3.8	18
114	Hybrid MC-DFT method for studying multidimensional entropic forces. <i>Journal of Physical Chemistry B</i> , 2011 , 115, 1450-60	3.4	18
113	Self-consistent equations governing the dynamics of nonequilibrium colloidal systems. <i>Journal of Chemical Physics</i> , 2011 , 134, 054514	3.9	18
112	An efficient method for accurate evaluation of the sitellite direct correlation functions of molecular fluids. <i>Molecular Physics</i> , 2011 , 109, 2553-2564	1.7	18
111	A perturbative density functional theory for square-well fluids. <i>Journal of Chemical Physics</i> , 2011 , 134, 174702	3.9	18
110	Seeking metalBrganic frameworks for methane storage in natural gas vehicles. <i>Adsorption</i> , 2015 , 21, 499-507	2.6	17
109	Equation of State for the Phase Behavior of Carbon Dioxide P olymer Systems. <i>Industrial & amp;</i> Engineering Chemistry Research, 2010 , 49, 7678-7684	3.9	17
108	Cluster formation and bulk phase behavior of colloidal dispersions. <i>Physical Review E</i> , 2009 , 80, 021401	2.4	17
107	Toward the inverse design of MOF membranes for efficient D2/H2 separation by combination of physics-based and data-driven modeling. <i>Journal of Membrane Science</i> , 2020 , 598, 117675	9.6	17
106	Molecular dynamics for the charging behavior of nanostructured electric double layer capacitors containing room temperature ionic liquids. <i>Nano Research</i> , 2015 , 8, 931-940	10	15
105	Electrolyte cation length influences electrosorption and dynamics in porous carbon supercapacitors. <i>Electrochimica Acta</i> , 2018 , 283, 882-893	6.7	15

(2017-2009)

10	Solvation of a spherical cavity in simple liquids: interpolating between the limits. <i>Journal of Physical Chemistry B</i> , 2009 , 113, 6813-8	3.4	15	
10	Self-organization of multivalent counterions in polyelectrolyte brushes. <i>Journal of Chemical Physics</i> , 2008 , 129, 084903	3.9	15	
10	Isotropic-nematic phase transition in athermal solutions of rod-coil diblock copolymers. <i>Journal of Chemical Physics</i> , 2007 , 127, 034902	3.9	15	
10	Molecular thermodynamics for charged biomacromolecules. <i>Fluid Phase Equilibria</i> , 2006 , 241, 317-333	2.5	15	
10	On the hydrophilicity of electrodes for capacitive energy extraction. <i>Journal of Physics Condensed Matter</i> , 2016 , 28, 464008	1.8	15	
99	Electric double layer capacitance for ionic liquids in nanoporous electrodes: Effects of pore size and ion composition. <i>Journal of Molecular Liquids</i> , 2018 , 270, 145-150	6	15	
98	Continuous transition from double-layer to Faradaic charge storage in confined electrolytes. <i>Nature Energy</i> , 2022 , 7, 222-228	62.3	15	
97	Non-scaling behavior of electroosmotic flow in voltage-gated nanopores. <i>Physical Chemistry Chemical Physics</i> , 2016 , 19, 450-457	3.6	14	
96	Concanavalin A Coated Activated Carbon for High Performance Enzymatic Catalysis. <i>ACS Sustainable Chemistry and Engineering</i> , 2017 , 5, 90-96	8.3	14	
95	A molecular theory for optimal blue energy extraction by electrical double layer expansion. <i>Physical Chemistry Chemical Physics</i> , 2015 , 17, 23970-6	3.6	14	
94	Modeling selective ion adsorption into cylindrical nanopores. <i>Chemical Physics Letters</i> , 2018 , 709, 116-1	24 .5	14	
93	Shape effect on nanoparticle solvation: a comparison of morphometric thermodynamics and microscopic theories. <i>Langmuir</i> , 2012 , 28, 6997-7006	4	14	
92	Modeling Microscopic Morphology and Mechanical Properties of Block Copolymer/Nanoparticle Composites. <i>Macromolecules</i> , 2009 , 42, 7537-7544	5.5	14	
91	Separation of long DNA molecules through cleavage of hydrogen bonds under a stretching force. Applied Physics Letters, 2007 , 91, 113902	3.4	14	
90	Understanding the Electric Double-Layer Structure, Capacitance, and Charging Dynamics. <i>Chemical Reviews</i> ,	68.1	14	
89) Impurity effects on ionic-liquid-based supercapacitors. <i>Molecular Physics</i> , 2017 , 115, 454-464	1.7	13	
88	Fast prediction of hydration free energies for SAMPL4 blind test from a classical density functional theory. <i>Journal of Computer-Aided Molecular Design</i> , 2014 , 28, 299-304	4.2	13	
87	Structure and capacitance of an electric double layer of an asymmetric valency dimer electrolyte: A comparison of the density functional theory with Monte Carlo simulations. <i>Journal of Molecular Liquids</i> , 2017 , 228, 236-242	6	13	

86	Ion distribution and selectivity of ionic liquids in microporous electrodes. <i>Journal of Chemical Physics</i> , 2017 , 146, 174701	3.9	12
85	Data-Driven Approach to Understanding the In-Operando Performance of Heteroatom-Doped Carbon Electrodes. <i>ACS Applied Energy Materials</i> , 2020 , 3, 5993-6000	6.1	12
84	Toward high-throughput predictions of the hydration free energies of small organic molecules from first principles. <i>Fluid Phase Equilibria</i> , 2016 , 407, 304-313	2.5	11
83	A molecular thermodynamic model for the stability of hepatitis B capsids. <i>Journal of Chemical Physics</i> , 2014 , 140, 235101	3.9	11
82	Dynamic control of protein folding pathway with a polymer of tunable hydrophobicity. <i>Journal of Physical Chemistry B</i> , 2007 , 111, 12303-9	3.4	11
81	Spreading of a Unilamellar Liposome on Charged Substrates: A Coarse-Grained Molecular Simulation. <i>Langmuir</i> , 2016 , 32, 3785-93	4	11
80	Entropic forces of single-chain confinement in spherical cavities. <i>Physical Review E</i> , 2010 , 82, 041805	2.4	10
79	Molecular dynamics for surfactant-assisted protein refolding. <i>Journal of Chemical Physics</i> , 2007 , 126, 064906	3.9	10
78	Partitioning of proteins between an aqueous solution and a weakly-ionizable polyelectrolyte hydrogel. <i>Polymer</i> , 1996 , 37, 4803-4808	3.9	10
77	Potential of mean force and transient states in polyelectrolyte pair complexation. <i>Journal of Chemical Physics</i> , 2016 , 145, 034901	3.9	10
76	Self-Amplified Surface Charging and Partitioning of Ionic Liquids in Nanopores. <i>Physical Review Applied</i> , 2017 , 8,	4.3	9
75	Structure of an electric double layer containing a 2:2 valency dimer electrolyte. <i>Journal of Colloid and Interface Science</i> , 2015 , 449, 175-9	9.3	9
74	Site-site direct correlation functions for three popular molecular models of liquid water. <i>Journal of Chemical Physics</i> , 2013 , 139, 064509	3.9	9
73	Thermodynamic Route to Efficient Prediction of Gas Diffusivity in Nanoporous Materials. <i>Langmuir</i> , 2017 , 33, 11797-11803	4	9
72	An improved classical mapping method for homogeneous electron gases at finite temperature. <i>Journal of Chemical Physics</i> , 2014 , 141, 064115	3.9	9
71	Structural and dynamic properties of colloids near jamming transition. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2004 , 247, 145-151	5.1	9
70	Generalizations for the potential of mean force between two isolated colloidal particles from Monte Carlo simulations. <i>Journal of Colloid and Interface Science</i> , 2002 , 252, 326-30	9.3	9
69	Application of the new perturbation method to predict densities of single electrolyte aqueous solutions. <i>Fluid Phase Equilibria</i> , 1995 , 107, 45-59	2.5	9

(2020-2020)

68	Modeling Surface Charge Regulation of Colloidal Particles in Aqueous Solutions. <i>Langmuir</i> , 2020 , 36, 11918-11928	4	9
67	Does capillary evaporation limit the accessibility of nonaqueous electrolytes to the ultrasmall pores of carbon electrodes?. <i>Journal of Chemical Physics</i> , 2018 , 149, 234708	3.9	9
66	Flow effects on silicate dissolution and ion transport at an aqueous interface. <i>Physical Chemistry Chemical Physics</i> , 2019 , 21, 6970-6975	3.6	8
65	Understanding surface charge regulation in silica nanopores. <i>Physical Chemistry Chemical Physics</i> , 2020 , 22, 15373-15380	3.6	8
64	Separation of Carbon Isotopes in Methane with Nanoporous Materials. <i>Industrial & Amp; Engineering Chemistry Research</i> , 2018 , 57, 5151-5160	3.9	8
63	A bridge-functional-based classical mapping method for predicting the correlation functions of uniform electron gases at finite temperature. <i>Journal of Chemical Physics</i> , 2014 , 140, 084103	3.9	8
62	Separation of single-stranded DNA fragments at a 10-nucleotide resolution by stretching in microfluidic channels. <i>Lab on A Chip</i> , 2011 , 11, 4036-40	7.2	8
61	Gaussian fluctuations in tethered DNA chains. <i>Journal of Chemical Physics</i> , 2011 , 134, 065103	3.9	8
60	Phase equilibria in a system of B reathingImolecules. <i>Fluid Phase Equilibria</i> , 2002 , 194-197, 689-700	2.5	8
59	Demystifying the Stern layer at a metal-electrolyte interface: Local dielectric constant, specific ion adsorption, and partial charge transfer. <i>Journal of Chemical Physics</i> , 2021 , 154, 124701	3.9	8
58	Kinetics of CO diffusion in human carbonic anhydrase: a study using molecular dynamics simulations and the Markov-state model. <i>Physical Chemistry Chemical Physics</i> , 2017 , 19, 11690-11697	3.6	7
57	Cation Molecular Structure Affects Mobility and Transport of Electrolytes in Porous Carbons. <i>Journal of the Electrochemical Society</i> , 2019 , 166, A507-A514	3.9	7
56	A molecular theory for predicting the thermodynamic efficiency of electrokinetic energy conversion in slit nanochannels. <i>Journal of Chemical Physics</i> , 2018 , 148, 084701	3.9	7
55	An improved theoretical procedure for the pore-size analysis of activated carbon by gas adsorption. <i>Chinese Journal of Chemical Engineering</i> , 2018 , 26, 551-559	3.2	7
54	Molecular Theory of Hydration at Different Temperatures. <i>Journal of Physical Chemistry B</i> , 2017 , 121, 6898-6908	3.4	7
53	A theoretical study of colloidal forces near amphiphilic polymer brushes. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2011 , 384, 115-120	5.1	7
52	Jamming phase diagram of colloidal dispersions by molecular dynamics simulations. <i>Applied Physics Letters</i> , 2004 , 84, 4565-4567	3.4	7
51	Microscopic insights into the Faradaic reaction effects on the electric double layers. <i>Chemical Engineering Science</i> , 2020 , 215, 115452	4.4	7

50	Electrochemical Behavior of Nanoporous Supercapacitors with Oligomeric Ionic Liquids. <i>Journal of Physical Chemistry C</i> , 2018 , 122, 14402-14407	3.8	7
49	Pluronic-Conjugated Enzyme Cascade for In Situ Oxidation in Biphasic Media. <i>ChemCatChem</i> , 2018 , 10, 2003-2008	5.2	6
48	Sorting short fragments of single-stranded DNA with an evolving electric double layer. <i>Journal of Physical Chemistry B</i> , 2013 , 117, 2267-72	3.4	6
47	Formation of lamellar structures from spherical particles. <i>Journal of Chemical Physics</i> , 2009 , 130, 16510	23.9	6
46	A Diffusion-Reaction Model for One-Pot Synthesis of Chemicals with Enzyme Cascades. <i>ChemCatChem</i> , 2020 , 12, 528-535	5.2	6
45	Polyelectrolytes Tailored Enzyme Cascades with Enhanced Stability and Activity for One-pot Synthesis. <i>ChemCatChem</i> , 2018 , 10, 5391-5396	5.2	6
44	Classical Density Functional Theory for Molecular Systems. <i>Molecular Modeling and Simulation</i> , 2017 , 65-99		5
43	Multimodels computation for adsorption capacity of activated carbon. <i>Adsorption Science and Technology</i> , 2018 , 36, 508-520	3.6	5
42	Side-chain effects on the capacitive behaviour of ionic liquids in microporous electrodes. <i>Molecular Physics</i> , 2019 , 117, 3603-3613	1.7	5
41	A liquid-state theory for electron correlation functions and thermodynamics. <i>Chemical Physics Letters</i> , 2013 , 556, 336-340	2.5	5
40	Molecular dynamics simulations reveal how graphene oxide stabilizes and activates lipase in an anhydrous gas. <i>Physical Chemistry Chemical Physics</i> , 2019 , 21, 25425-25430	3.6	5
39	Fractionation of Isotopic Methanes with Metal©rganic Frameworks. <i>Journal of Physical Chemistry C</i> , 2019 , 123, 7397-7407	3.8	4
38	Multiscale simulation of surfactant quaporin complex formation and water permeability. <i>RSC Advances</i> , 2014 , 4, 37592-37599	3.7	4
37	A theoretical study of SRPK interaction with the flexible domains of hepatitis B capsids. <i>Biophysical Journal</i> , 2014 , 107, 1453-61	2.9	4
36	A GPU implementation of classical density functional theory for rapid prediction of gas adsorption in nanoporous materials. <i>Journal of Chemical Physics</i> , 2020 , 153, 074101	3.9	4
35	Predicting hydration free energies of amphetamine-type stimulants with a customized molecular model. <i>Journal of Physics Condensed Matter</i> , 2016 , 28, 344001	1.8	4
34	A Multiscale Procedure for Predicting the Hydration Free Energies of Polycyclic Aromatic Hydrocarbons. <i>Journal of Chemical & Engineering Data</i> , 2020 , 65, 2206-2211	2.8	3
33	Markov-state model for CO binding with carbonic anhydrase under confinement. <i>Journal of Chemical Physics</i> , 2018 , 148, 035101	3.9	3

32	Accelerating CO2 Absorption in Aqueous Amine Solutions at High Temperature with Carbonic Anhydrase in Magnetic Nanogels. <i>Catalysis Letters</i> , 2018 , 148, 1827-1833	2.8	3
31	Detachment of HCO3Ifrom the Active Site of Carbonic Anhydrase: Molecular Dynamics Simulation and Machine Learning. <i>Journal of Physical Chemistry C</i> , 2018 , 122, 20539-20549	3.8	3
30	A new exchange-correlation functional free of delocalization and static correlation errors. <i>Physical Chemistry Chemical Physics</i> , 2014 , 16, 16373-7	3.6	3
29	Solvation Structure of Surface-Supported Amine Fragments: A Molecular Dynamics Study. <i>Journal of Physical Chemistry C</i> , 2017 , 121, 22156-22163	3.8	3
28	Contact value relations and density functional theory for the electrical double layer. <i>Molecular Physics</i> , 2014 , 112, 3144-3151	1.7	3
27	Charge Regulation of Natural Amino Acids in Aqueous Solutions. <i>Journal of Chemical & Ch</i>	2.8	3
26	Curvature effects on electric-double-layer capacitance. <i>Chinese Journal of Chemical Engineering</i> , 2021 , 31, 145-152	3.2	3
25	A Thermodynamic Model for Genome Packaging in Hepatitis B Virus. <i>Biophysical Journal</i> , 2015 , 109, 166	89 2. 97	2
24	Density functional theory for encapsidated polyelectrolytes: a comparison with Monte Carlo simulation. <i>Journal of Chemical Physics</i> , 2012 , 137, 044905	3.9	2
23	Modeling the Electrostatics and Size Effect within a Crowded Bioenvironment. <i>Macromolecular Symposia</i> , 2005 , 219, 51-58	0.8	2
22	Computational screening and design of nanoporous membranes for efficient carbon isotope separation. <i>Green Energy and Environment</i> , 2020 , 5, 364-373	5.7	2
21	Thermodynamic non-ideality in charge regulation of weak polyelectrolytes. <i>Soft Matter</i> , 2021 , 17, 9221	-9264	2
20	Theoretical Insights into MXene Termination and Surface Charge Regulation. <i>Journal of Physical Chemistry C</i> ,	3.8	2
19	A theoretical study on the morphological phase diagram of supported lipid bilayers. <i>Physical Chemistry Chemical Physics</i> , 2017 , 19, 16897-16903	3.6	1
18	110th Anniversary: Molecular Thermodynamics: An Endless Frontier. <i>Industrial & Discourse Engineering Chemistry Research</i> , 2019 , 58, 9707-9708	3.9	1
17	Theoretic Insights into Porous Carbon-Based Supercapacitors 2015 , 361-378		1
16	Wettability of ultra-small pores of carbon electrodes by size-asymmetric ionic fluids. <i>Journal of Chemical Physics</i> , 2020 , 152, 054708	3.9	1
15	Direct correlation functions for three-site and four-site water models. <i>Molecular Physics</i> , 2016 , 114, 235	51£ <i>2</i> 736	3 1

14	Structure and thermodynamic properties of relativistic electron gases. <i>Physical Review E</i> , 2014 , 90, 012141	4	1
13	Square-Gradient Model for Inhomogeneous Systems: From Simple Fluids to Microemulsions, Polymer Blends and Electronic Structure. <i>Molecular Modeling and Simulation</i> , 2017 , 31-64		1
12	Massively Parallel GPU-Accelerated String Method for Fast and Accurate Prediction of Molecular Diffusivity in Nanoporous Materials. <i>ACS Applied Nano Materials</i> , 2021 , 4, 5394-5403	5	1
11	Mechanistic Insights of Pore Contributions in Carbon Supercapacitors by Modified Step Potential Electrochemical Spectroscopy. <i>Journal of the Electrochemical Society</i> , 2021 , 168, 060530	9	1
10	A life dedicated to the theory of simple fluids [In memory of Yiping Tang. <i>Molecular Physics</i> , 2016 , 114, 2325-2327	7	1
9	Molecular thermodynamics for amino-acid adsorption at inorganic surfaces. <i>AICHE Journal</i> ,e17432 3.6	5	1
8	Efficient force field and energy emulation through partition of permutationally equivalent atoms Journal of Chemical Physics, 2022, 156, 184304	9	1
7	A hybrid theoretical method for predicting electrokinetic energy conversion in nanochannels. Physical Chemistry Chemical Physics, 2020 , 22, 9110-9116	5	0
6	Ising density functional theory for weak polyelectrolytes with strong coupling of ionization and intrachain correlations <i>Journal of Chemical Physics</i> , 2021 , 155, 241102	9	О
5	Recent progress in enzymatic functionalization of carbon-hydrogen bonds for the green synthesis of chemicals. <i>Chinese Journal of Chemical Engineering</i> , 2020 , 28, 2499-2506	<u>2</u>	О
4	Theoretical insights on the hydration of quinones as catholytes in aqueous redox flow batteries. Chinese Journal of Chemical Engineering, 2021, 37, 72-72	2	О
3	Molecular Models for Hepatitis B Virus Capsid Formation, Maturation, and Envelopment 2016 , 134-185		
2	Modeling Multicomponent Gas Adsorption in Nanoporous Materials with Two Versions of Nonlocal Classical Density Functional Theory. <i>Industrial & Engineering Chemistry Research</i> , 2021 , 60, 17016-1702	25	
1	Modeling Nanoporous Materials for the Next Generation of Supercapacitors 2021 , 1-69		