Karl N Kirschner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4589042/publications.pdf

Version: 2024-02-01

54 papers

3,444 citations

257357 24 h-index 52 g-index

54 all docs 54 docs citations

54 times ranked 5158 citing authors

#	Article	IF	CITATIONS
1	GLYCAM06: A generalizable biomolecular force field. Carbohydrates. Journal of Computational Chemistry, 2008, 29, 622-655.	1.5	1,778
2	Quantum Mechanical Study of Sulfuric Acid Hydration: Atmospheric Implications. Journal of Physical Chemistry A, 2012, 116, 2209-2224.	1.1	111
3	Quantum Mechanical Study of the Nonbonded Forces in Waterâ [^] Methanol Complexes. Journal of Physical Chemistry A, 2001, 105, 4150-4155.	1.1	101
4	Prediction of Accurate Anharmonic Experimental Vibrational Frequencies for Water Clusters, (H2O)n, $n = 2\hat{a}^3$ 5. Journal of Physical Chemistry A, 2006, 110, 303-309.	1.1	99
5	Principal component and clustering analysis on molecular dynamics data of the ribosomal L11 \hat{A} ·23S subdomain. Journal of Molecular Modeling, 2013, 19, 539-549.	0.8	97
6	A Glycam-Based Force Field for Simulations of Lipopolysaccharide Membranes: Parametrization and Validation. Journal of Chemical Theory and Computation, 2012, 8, 4719-4731.	2.3	96
7	Do Hydroxyl Radicalâ^'Water Clusters, OH(H2O)n,n= 1â^'5, Exist in the Atmosphere?. Journal of Physical Chemistry A, 2006, 110, 13283-13289.	1.1	93
8	[{2,6â€(Me ₂ NCH ₂) ₂ C ₆ H ₃ }Sn] ₂ : An Intramolecularly Coordinated Diorganodistannyne. Angewandte Chemie - International Edition, 2008, 47, 1650-1653.	7.2	90
9	Global Search for Minimum Energy (H2O)n Clusters, n = 3â°'5. Journal of Physical Chemistry A, 2005, 109, 6773-6778.	1.1	89
10	Ortho Effect in the Bergman Cyclization:  Electronic and Steric Effects in Hydrogen Abstraction by 1-Substituted Naphthalene 5,8-Diradicals. Journal of Physical Chemistry A, 2006, 110, 2517-2526.	1.1	48
11	Reconciling solvent effects on rotamer populations in carbohydrates — A joint MD and NMR analysis. Canadian Journal of Chemistry, 2006, 84, 569-579.	0.6	47
12	The Limitations of Certain Density Functionals in Modeling Neutral Water Clusters. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2008, 38, 32-39.	0.6	45
13	ACPYPE update for nonuniform 1–4 scale factors: Conversion of the GLYCAM06 force field from AMBER to GROMACS. SoftwareX, 2019, 10, 100241.	1.2	41
14	Exploration of the Potential Energy Surfaces, Prediction of Atmospheric Concentrations, and Prediction of Vibrational Spectra for the HO2···(H2O)n(n= $1\hat{a}^{-2}$) Hydrogen Bonded Complexes. Journal of Physical Chemistry A, 2006, 110, 3686-3691.	1.1	39
15	Pople's Gaussian-3 model chemistry applied to an investigation of (H2O)8water clusters. International Journal of Quantum Chemistry, 2005, 102, 565-572.	1.0	38
16	Ramachandranâ€ŧype plots for glycosidic linkages: Examples from molecular dynamic simulations using the Glycam06 force field. Journal of Computational Chemistry, 2009, 30, 910-921.	1.5	38
17	Selective targeting of NAMPT by KPT-9274 in acute myeloid leukemia. Blood Advances, 2019, 3, 242-255.	2.5	38
18	Modeling of magic water clusters (H2O)20 and (H2O)21H+ with the PM3 quantum-mechanical method. Journal of Computational Chemistry, 1993, 14, 1326-1332.	1.5	35

#	Article	IF	CITATIONS
19	NMR Structures of Thiostrepton Derivatives for Characterization of the Ribosomal Binding Site. Angewandte Chemie - International Edition, 2011, 50, 3308-3312.	7.2	33
20	Calculating Interaction Energies Using First Principle Theories: Consideration of Basis Set Superposition Error and Fragment Relaxation. Journal of Chemical Education, 2007, 84, 1225.	1.1	32
21	Thermodynamics of the Hydroxyl Radical Addition to Isoprene. Journal of Physical Chemistry A, 2008, 112, 7064-7071.	1.1	31
22	Quantum-Mechanical investigation of large water clusters. International Journal of Quantum Chemistry, 1994, 52, 349-360.	1.0	29
23	CCSD(T), W1, and other model chemistry predictions for gas-phase deprotonation reactions. International Journal of Quantum Chemistry, 2006, 106, 3122-3128.	1.0	29
24	Hydration of OCS with One to Four Water Molecules in Atmospheric and Laboratory Conditions. Journal of Physical Chemistry A, 2008, 112, 4490-4495.	1.1	27
25	Computational Design and Experimental Discovery of an Antiestrogenic Peptide Derived from \hat{l}_{\pm} -Fetoprotein. Journal of the American Chemical Society, 2007, 129, 6263-6268.	6.6	26
26	Interactions of Water and Alkanes: Modifying Additive Force Fields to Account for Polarization Effects. Journal of Chemical Theory and Computation, 2019, 15, 3854-3867.	2.3	25
27	Use of the Supermolecule Approach To Model the Syn and Anti Conformations of Solvated Cyclic 3â€~,5â€~-Adenosine Monophosphate. The Journal of Physical Chemistry, 1996, 100, 3293-3298.	2.9	21
28	A modern workflow for force-field development – Bridging quantum mechanics and atomistic computational models. Computer Physics Communications, 2011, 182, 2184-2191.	3.0	21
29	In search of CS2(H2O)n=1–4 clusters. Journal of Chemical Physics, 2007, 126, 154320.	1.2	20
30	Efficient and Accurate Characterization of the Bergman Cyclization for Several Enediynes Including an Expanded Substructure of Esperamicin A1. Journal of Physical Chemistry B, 2008, 112, 16917-16934.	1.2	18
31	Structural analysis of human glycoprotein butyrylcholinesterase using atomistic molecular dynamics: The importance of glycosylation site ASN241. PLoS ONE, 2017, 12, e0187994.	1.1	15
32	Binding free energy calculation for duocarmycin/DNA complex based on the QPLD-derived partial charge model. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 542-545.	1.0	14
33	Interaction of natural flavonoid eriocitrin with \hat{l}^2 -cyclodextrin and hydroxypropyl- \hat{l}^2 -cyclodextrin: an NMR and molecular dynamics investigation. New Journal of Chemistry, 2020, 44, 16431-16441.	1.4	14
34	Structure and thermodynamics of H3O+(H2O)8 clusters: A combined molecular dynamics and quantum mechanics approach. Computational and Theoretical Chemistry, 2013, 1021, 240-248.	1.1	13
35	Small Alcohols Revisited: CCSD(T) Relative Potential Energies for the Minima, First- and Second-Order Saddle Points, and Torsion-Coupled Surfaces. ACS Omega, 2018, 3, 419-432.	1.6	13
36	The search for low energy conformational families of small peptides: Searching for active conformations of small peptides in the absence of a known receptor. International Journal of Quantum Chemistry, 2007, 107, 3001-3012.	1.0	12

3

#	Article	IF	Citations
37	Atomistic simulations of isotactic and atactic poly(methyl methacrylate) melts: exploring the backbone conformational space. Molecular Simulation, 2010, 36, 1253-1264.	0.9	11
38	Wolf ₂ Pack – Portal Based Atomistic Force-Field Development. Journal of Chemical Information and Modeling, 2013, 53, 802-808.	2.5	11
39	Optimizing Molecular Models Through Force-Field Parameterization via the Efficient Combination of Modular Program Packages. Molecular Modeling and Simulation, 2016, , 53-77.	0.2	11
40	Incorporation of Carbohydrates into Macromolecular Force Fields: Development and Validation. ACS Symposium Series, 2006, , 235-257.	0.5	10
41	Liquid–liquid equilibria of dipropylene glycol dimethyl ether and water by molecular dynamics. Fluid Phase Equilibria, 2011, 310, 25-31.	1.4	10
42	Influence of thiostrepton binding on the ribosomal GTPase associated region characterized by molecular dynamics simulation. Bioorganic and Medicinal Chemistry, 2012, 20, 7194-7205.	1.4	10
43	Optimized atomistic force fields for aqueous solutions of Magnesium and Calcium Chloride: Analysis, achievements and limitations. European Physical Journal: Special Topics, 2016, 225, 1391-1409.	1.2	10
44	The performance of Dunning, Jensen, and Karlsruhe basis sets on computing relative energies and geometries. Soft Materials, 2020, 18, 200-214.	0.8	10
45	Quantum mechanical investigation of cyclic 3′,5′-adenosine monophosphate, the second hormonal messenger. Computational and Theoretical Chemistry, 1996, 362, 297-304.	1.5	9
46	Structure–activity relationships of thiostrepton derivatives: implications for rational drug design. Journal of Computer-Aided Molecular Design, 2014, 28, 1205-1215.	1.3	9
47	Density functional and ab initio studies on N -acetyl-duocarmycin SA: insight into its DNA interaction properties. Bioorganic and Medicinal Chemistry, 2000, 8, 329-335.	1.4	7
48	Relative electronic and free energies of octane's unique conformations. Molecular Physics, 2017, 115, 1155-1165.	0.8	6
49	Multi-objective optimisation on the basis of random models for ethylene oxide. Molecular Simulation, 2010, 36, 1208-1218.	0.9	5
50	Visualizing potential energy curves and conformations on ultra high-resolution display walls. Journal of Molecular Graphics and Modelling, 2015, 62, 174-180.	1.3	4
51	Molecular Dynamics in the Energy Sector: Experiment and Modeling of the CO ₂ /CH ₄ Mixture. Journal of Chemical & Engineering Data, 2020, 65, 1117-1123.	1.0	4
52	Optimizing Lennard-Jones parameters by coupling single molecule and ensemble target data. Computer Physics Communications, 2022, 274, 108285.	3.0	1
53	Teaching Technical Journalism with an Engineering Foundation. , 2020, , .		0
54	Molecular Dynamics Simulation of Membrane Free Energy Profiles Using Accurate Force Field for Ionic Liquids., 2017,, 265-284.		0