Yongxiao Tuo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4588930/publications.pdf

Version: 2024-02-01

414414 430874 1,144 33 18 32 h-index citations g-index papers 33 33 33 897 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Phosphorus Induced Electron Localization of Single Iron Sites for Boosted CO ₂ Electroreduction Reaction. Angewandte Chemie - International Edition, 2021, 60, 23614-23618.	13.8	197
2	Hierarchical trimetallic Co-Ni-Fe oxides derived from core-shell structured metal-organic frameworks for highly efficient oxygen evolution reaction. Applied Catalysis B: Environmental, 2021, 287, 119953.	20.2	175
3	Ta-doping triggered electronic structural engineering and strain effect in NiFe LDH for enhanced water oxidation. Chemical Engineering Journal, 2021, 403, 126297.	12.7	154
4	Dual Role of Pyridinic-N Doping in Carbon-Coated Ni Nanoparticles for Highly Efficient Electrochemical CO ₂ Reduction to CO over a Wide Potential Range. ACS Catalysis, 2022, 12, 1364-1374.	11,2	73
5	Highly efficient CoMoS heterostructure derived from vertically anchored Co5Mo10 polyoxometalate for electrocatalytic overall water splitting. Chemical Engineering Journal, 2020, 394, 124849.	12.7	67
6	Partial positively charged Pt in Pt/MgAl2O4 for enhanced dehydrogenation activity. Applied Catalysis B: Environmental, 2021, 288, 119996.	20.2	44
7	Identifying the role of Ni and Fe in Ni–Fe co-doped orthorhombic CoSe2 for driving enhanced electrocatalytic activity for oxygen evolution reaction. Electrochimica Acta, 2020, 335, 135682.	5.2	39
8	In-situ doping-induced lattice strain of NiCoP/S nanocrystals for robust wide pH hydrogen evolution electrocatalysis and supercapacitor. Journal of Energy Chemistry, 2022, 70, 27-35.	12.9	32
9	Ultra-small Co/CoO nanoparticles dispersed on N-doped carbon nanosheets for highly efficient electrocatalytic oxygen evolution reaction. Journal of Energy Chemistry, 2021, 55, 345-354.	12.9	29
10	Regulating light olefins or aromatics production in ex-situ catalytic pyrolysis of biomass by engineering the structure of tin modified ZSM-5 catalyst. Bioresource Technology, 2021, 330, 124975.	9.6	25
11	Mesoporogen-Free Strategy to Construct Hierarchical TS-1 in a Highly Concentrated System for Gas-Phase Propene Epoxidation with H ₂ and O ₂ . ACS Applied Materials & Interfaces, 2021, 13, 26134-26142.	8.0	22
12	Phosphorus Induced Electron Localization of Single Iron Sites for Boosted CO ₂ Electroreduction Reaction. Angewandte Chemie, 2021, 133, 23806-23810.	2.0	22
13	Biâ€Functional Fe ₃ O ₄ /Au/CoFeâ€LDH Sandwichâ€Structured Electrocatalyst for Asymmetrical Electrolyzer with Low Operation Voltage. Small, 2021, 17, e2103307.	10.0	22
14	Effects of carbon support on microwave-assisted catalytic dehydrogenation of decalin. Carbon, 2014, 67, 775-783.	10.3	21
15	Synthesis and identifying the active site of Cu2Se@CoSe nano-composite for enhanced electrocatalytic oxygen evolution. Electrochimica Acta, 2019, 320, 134589.	5.2	21
16	Interfacial polarization in ultra-small Co3S4â^'MoS2 heterostructure for efficient electrocatalytic hydrogen evolution reaction. Applied Materials Today, 2022, 26, 101311.	4.3	21
17	The facile synthesis of core–shell PtCu nanoparticles with superior electrocatalytic activity and stability in the hydrogen evolution reaction. RSC Advances, 2021, 11, 26326-26335.	3.6	20
18	Density functional theory study of decalin dehydrogenation for hydrogen release on Pt(111) and Pt(211). International Journal of Hydrogen Energy, 2018, 43, 19575-19588.	7.1	19

#	Article	IF	CITATIONS
19	Embedding anion-doped Fe7S8 in N-doped carbon matrix and shell for fast and stable sodium storage. Materials Chemistry and Physics, 2021, 264, 124456.	4.0	18
20	Microwave-assisted hydrogen releasing from liquid organic hydride over Pt/CNT catalyst: Effects of oxidation treatment of CNTs. Catalysis Today, 2016, 276, 121-127.	4.4	16
21	Engineering Pt/carbon-nanofibers/carbon-paper composite towards highly efficient catalyst for hydrogen evolution from liquid organic hydride. International Journal of Hydrogen Energy, 2015, 40, 12217-12226.	7.1	15
22	Hierarchical Cu3P-based nanoarrays on nickel foam as efficient electrocatalysts for overall water splitting. Green Energy and Environment, 2022, 7, 236-245.	8.7	15
23	Graphene–CNT composite as catalyst support for microwave-assisted hydrogen releasing from liquid organic hydride. International Journal of Hydrogen Energy, 2017, 42, 17403-17413.	7.1	13
24	Kinetic behavior of Pt catalyst supported on structured carbon nanofiber bed during hydrogen releasing from decalin. International Journal of Hydrogen Energy, 2016, 41, 10755-10765.	7.1	11
25	Carbon nanotubes-supported Pt catalysts for decalin dehydrogenation to release hydrogen: A comparison between nitrogen- and oxygen-surface modification. International Journal of Hydrogen Energy, 2021, 46, 930-942.	7.1	8
26	An efficient and stable coral-like CoFeS ₂ for wearable flexible all-solid-state asymmetric supercapacitor applications. New Journal of Chemistry, 2021, 45, 16606-16616.	2.8	8
27	Searching for efficient defect types in carbon nanofibers to promote supported Pt catalytic activity for dehydrogenation reaction. Catalysis Today, 2020, 347, 87-95.	4.4	7
28	Strandberg-type polyoxometalate deriving O,P co-doped NiMoS/CC catalyst for highly efficient hydrogen evolution electrocatalysis. International Journal of Hydrogen Energy, 2022, 47, 25571-25582.	7.1	7
29	Mesoporous Mn-Doped FeP: Facile Synthesis and Enhanced Electrocatalytic Activity for Hydrogen Evolution in a Wide pH Range. ACS Sustainable Chemistry and Engineering, 0, , .	6.7	6
30	Constructing RuCoO _x /NC Nanosheets with Low Crystallinity within ZIFâ€9 as Bifunctional Catalysts for Highly Efficient Overall Water Splitting. Chemistry - an Asian Journal, 2021, 16, 2511-2519.	3.3	6
31	Synthesis of P-doped NiS as an electrode material for supercapacitors with enhanced rate capability and cycling stability. New Journal of Chemistry, 2022, 46, 6461-6469.	2.8	5
32	Achieving ultra-dispersed 1T-Co-MoS ₂ @HMCS <i>via</i> space-confined engineering for highly efficient hydrogen evolution in the universal pH range. Inorganic Chemistry Frontiers, 2022, 9, 2617-2627.	6.0	5
33	Engineering the efficient three-dimension hollow cubic carbon from vacuum residuum with enhanced mass transfer ability towards H2O2 production. Chinese Journal of Chemical Engineering, 2021, 38, 98-105.	3.5	1