B Poornaprakash

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4588733/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Composition dependent room temperature ferromagnetism and PL intensity of cobalt doped ZnS nanoparticles. Journal of Alloys and Compounds, 2013, 577, 79-85.	5.5	113
2	Structural, optical and magnetic properties of Zn0.97â´'xCuxCr0.03S nanoparticles. Applied Surface Science, 2012, 258, 5206-5211.	6.1	58
3	Room temperature magnetism of Fe doped CdS nanocrystals. Physica B: Condensed Matter, 2012, 407, 2084-2088.	2.7	42
4	Dopant induced RTFM and enhancement of fluorescence efficiencies in spintronic ZnS:Ni nanoparticles. Ceramics International, 2014, 40, 2677-2684.	4.8	41
5	Compositional, morphological, structural, microstructural, optical, and magnetic properties of Fe, Co, and Ni doped ZnS nanoparticles. Applied Physics A: Materials Science and Processing, 2017, 123, 1.	2.3	36
6	Structural, morphological, optical, and magnetic properties of Gd-doped and (Gd, Mn) co-doped ZnO nanoparticles. Physica E: Low-Dimensional Systems and Nanostructures, 2017, 93, 111-115.	2.7	33
7	Effect of Eu3+ on the morphology, structural, optical, magnetic, and photocatalytic properties of ZnO nanoparticles. Superlattices and Microstructures, 2018, 123, 154-163.	3.1	33
8	Defect induced paramagnetism in lightly doped ZnS:Fe nanoparticles. Physica E: Low-Dimensional Systems and Nanostructures, 2015, 73, 63-68.	2.7	31
9	Chromium doped ZnS nanoparticles: chemical, structural, luminescence and magnetic studies. Journal of Materials Science: Materials in Electronics, 2016, 27, 6474-6479.	2.2	25
10	Enhanced photocatalytic degradation and hydrogen evolution of ZnS nanoparticles by (Co, Er) co-doping. Materials Letters, 2020, 273, 127887.	2.6	21
11	Robust ferromagnetism of ZnO:(Ni+Er) diluted magnetic semiconductor nanoparticles for spintronic applications. Ceramics International, 2021, 47, 18557-18564.	4.8	21
12	Influence of transition metals co-doping on CeO2 magnetic and photocatalytic activities. Ceramics International, 2020, 46, 5086-5097.	4.8	20
13	(Al, Cu) Co-doped ZnS nanoparticles: structural, chemical, optical, and photocatalytic properties. Journal of Materials Science: Materials in Electronics, 2019, 30, 9897-9902.	2.2	16
14	Ammonia(aq)-enhanced growth of cubic SnS thin films by chemical bath deposition for solar cell applications. Applied Physics A: Materials Science and Processing, 2020, 126, 1.	2.3	16
15	Tailoring the optical and magnetic properties of ZnS nanoparticles via 3d and 4f elements co-doping. Materials Science in Semiconductor Processing, 2021, 121, 105395.	4.0	16
16	Doping-induced photocatalytic activity and hydrogen evolution of ZnS: V nanoparticles. Ceramics International, 2021, 47, 26438-26446.	4.8	16
17	Co-Doped ZnS Quantum Dots: Structural, Optical, Photoluminescence, Magnetic, and Photocatalytic Properties. Journal of Superconductivity and Novel Magnetism, 2020, 33, 539-544.	1.8	15
18	Photoluminescence and hydrogen evolution properties of ZnS:Eu quantum dots. Ceramics International, 2021, 47, 28976-28984.	4.8	15

B POORNAPRAKASH

#	Article	IF	CITATIONS
19	Elemental, morphological, structural, optical, and magnetic properties of erbium doped ZnO nanoparticles. Materials Research Express, 2018, 5, 035018.	1.6	13
20	Effect of thiourea concentration on the growth and properties of Cu \$\$_{3}\$\$ 3 SnS \$\$_{4}\$\$ 4 thin films prepared by spray pyrolysis. Journal of Materials Science: Materials in Electronics, 2017, 28, 2954-2961.	2.2	11
21	CdS:Eu quantum dots for spintronics and photocatalytic applications. Journal of Materials Science: Materials in Electronics, 2019, 30, 8220-8225.	2.2	10
22	Influence of Sm Doping on the Structural, Optical, and Magnetic Properties of ZnO Nanopowders. Journal of Superconductivity and Novel Magnetism, 2017, 30, 1937-1941.	1.8	9
23	Fabrication of \$\$ext {Cu}_{2}ext {SnS}_{3}\$\$ Cu 2 SnS 3 films by annealing chemically deposited SnS–CuS precursors in a graphite box. Journal of Materials Science: Materials in Electronics, 2018, 29, 1451-1462.	2.2	8
24	Chemical, morphological, structural, optical, and magnetic properties of Zn1â^'xNdxO nanoparticles. Journal of Materials Science: Materials in Electronics, 2018, 29, 20650-20657.	2.2	8
25	Achieving room temperature ferromagnetism in ZnO nanoparticles via Dy doping. Journal of Materials Science: Materials in Electronics, 2018, 29, 2316-2321.	2.2	7
26	Structural and magnetic properties of ZnS:Tb3+ nanoparticles. Journal of Materials Science: Materials in Electronics, 2017, 28, 3672-3677.	2.2	6
27	Structural, Morphological, Optical, Photoluminescence, and Magnetic Properties of Zn1-xNixO Nanoparticles. Journal of Superconductivity and Novel Magnetism, 2020, 33, 493-502.	1.8	5
28	Magnetic, electron paramagnetic resonance, and photocatalytic analysis of diluted magnetic semiconductor CdS:V nanoparticles. Ceramics International, 2021, 47, 16240-16247.	4.8	4
29	Synthesis and Characterization of ZnS, Zn 0 . 9 6 Eu 0 . 0 4 S, and Zn 0 . 9 5 Eu 0 . 0 4 Tb 0 . 0 1 S Nanoparticles. Journal of Superconductivity and Novel Magnetism, 2017, 30, 529-532.	1.8	1