James C Liao

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/4588497/james-c-liao-publications-by-year.pdf

Version: 2024-04-23

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

 262
 20,469
 78
 139

 papers
 citations
 h-index
 g-index

 278
 22,416
 9
 7.16

 ext. papers
 ext. citations
 avg, IF
 L-index

#	Paper	IF	Citations
262	A cell-free self-replenishing CO2-fixing system. <i>Nature Catalysis</i> , 2022 , 5, 154-162	36.5	2
261	Metabolomics-Driven Identification of the Rate-Limiting Steps in 1-Propanol Production <i>Frontiers in Microbiology</i> , 2022 , 13, 871624	5.7	О
260	Identification of COVID-19 B-cell epitopes with phage-displayed peptide library. <i>Journal of Biomedical Science</i> , 2021 , 28, 43	13.3	3
259	Role of cyanobacterial phosphoketolase in energy regulation and glucose secretion under dark anaerobic and osmotic stress conditions. <i>Metabolic Engineering</i> , 2021 , 65, 255-262	9.7	4
258	Analysis of genomic distributions of SARS-CoV-2 reveals a dominant strain type with strong allelic associations. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2020 , 117, 30679-30686	11.5	39
257	Converting Escherichia coli to a Synthetic Methylotroph Growing Solely on Methanol. <i>Cell</i> , 2020 , 182, 933-946.e14	56.2	60
256	Metabolome analysis revealed the knockout of glyoxylate shunt as an effective strategy for improvement of 1-butanol production in transgenic Escherichia coli. <i>Journal of Bioscience and Bioengineering</i> , 2019 , 127, 301-308	3.3	10
255	Escherichia coli as a host for metabolic engineering. <i>Metabolic Engineering</i> , 2018 , 50, 16-46	9.7	153
254	Rearrangement of Coenzyme A-Acylated Carbon Chain Enables Synthesis of Isobutanol via a Novel Pathway in Ralstonia eutropha. <i>ACS Synthetic Biology</i> , 2018 , 7, 794-800	5.7	18
253	Construction and evolution of an strain relying on nonoxidative glycolysis for sugar catabolism. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2018 , 115, 3538-3546	11.5	53
252	Directed strain evolution restructures metabolism for 1-butanol production in minimal media. <i>Metabolic Engineering</i> , 2018 , 49, 153-163	9.7	16
251	A modified serine cycle in Escherichia coli coverts methanol and CO to two-carbon compounds. <i>Nature Communications</i> , 2018 , 9, 3992	17.4	53
250	Metabolic repair through emergence of new pathways in Escherichia coli. <i>Nature Chemical Biology</i> , 2018 , 14, 1005-1009	11.7	14
249	Synthetic methanol auxotrophy of Escherichia coli for methanol-dependent growth and production. <i>Metabolic Engineering</i> , 2018 , 49, 257-266	9.7	50
248	Augmenting the Calvin-Benson-Bassham cycle by a synthetic malyl-CoA-glycerate carbon fixation pathway. <i>Nature Communications</i> , 2018 , 9, 2008	17.4	44
247	Rational engineering of diol dehydratase enables 1,4-butanediol biosynthesis from xylose. <i>Metabolic Engineering</i> , 2017 , 40, 148-156	9.7	56
246	Metabolic systems modeling for cell factories improvement. <i>Current Opinion in Biotechnology</i> , 2017 , 46, 114-119	11.4	14

(2016-2017)

245	Kinetically accessible yield (KAY) for redirection of metabolism to produce exo-metabolites. Metabolic Engineering, 2017, 41, 144-151 9.7	4
244	Metabolomics-driven approach to solving a CoA imbalance for improved 1-butanol production in Escherichia coli. <i>Metabolic Engineering</i> , 2017 , 41, 135-143	65
243	Engineering a Thermostable Keto Acid Decarboxylase Using Directed Evolution and Computationally Directed Protein Design. <i>ACS Synthetic Biology</i> , 2017 , 6, 610-618	18
242	Orthogonal partial least squares/projections to latent structures regression-based metabolomics approach for identification of gene targets for improvement of 1-butanol production in Escherichia 3.3 coli. <i>Journal of Bioscience and Bioengineering</i> , 2017 , 124, 498-505	15
241	Host Organism: Streptomyces 2016 , 487-504	2
240	Solid-State Fermentation 2016 , 187-204	1
239	CO2-fixing one-carbon metabolism in a cellulose-degrading bacterium Clostridium thermocellum. Proceedings of the National Academy of Sciences of the United States of America, 2016 , 113, 13180-13185 11.	5 35
238	Quantitative target analysis and kinetic profiling of acyl-CoAs reveal the rate-limiting step in cyanobacterial 1-butanol production. <i>Metabolomics</i> , 2016 , 12, 26	23
237	Characterization and evolution of an activator-independent methanol dehydrogenase from Cupriavidus necator N-1. <i>Applied Microbiology and Biotechnology</i> , 2016 , 100, 4969-83	41
236	Frontiers in microbial 1-butanol and isobutanol production. <i>FEMS Microbiology Letters</i> , 2016 , 363, fnw02 0 .9	63
235	Stability of Ensemble Models Predicts Productivity of Enzymatic Systems. <i>PLoS Computational Biology</i> , 2016 , 12, e1004800	20
234	Industrial-Scale Fermentation 2016, 1-53	4
233	Glutamic Acid Fermentation: Discovery of Glutamic Acid-Producing Microorganisms, Analysis of the Production Mechanism, Metabolic Engineering, and Industrial Production Process 2016 , 339-360	6
232	L-Lysine 2016 , 361-390	2
231	Diamines for Bio-Based Materials 2016 , 391-409	1
230	Microbial Production of 3-Hydroxypropionic Acid 2016 , 411-451	1
229	Itaconic Acid 🖾 Emerging Building Block 2016 , 453-472	5
228	Microbial Production of Isoprene: Opportunities and Challenges 2016 , 473-504	2

227	Succinic Acid 2016 , 505-544	3
226	Ethanol: A Model Biorenewable Fuel 2016, 547-572	1
225	Microbial Production of Butanols 2016 , 573-595	
224	Scale-Down: Simulating Large-Scale Cultures in the Laboratory 2016 , 55-79	4
223	Bioreactor Modeling 2016 , 81-128	1
222	Cell Culture Technology 2016 , 129-158	2
221	Anticancer Drugs 2016 , 237-269	
220	Biotechnological Production of Flavors 2016 , 271-308	2
219	Industrial Microorganisms: Pichia pastoris 2016 , 687-714	4
218	Industrial Microorganisms: Corynebacterium glutamicum 2016 , 183-220	12
218	Industrial Microorganisms: Corynebacterium glutamicum 2016 , 183-220 Production of Fuels and Chemicals from Biomass by Integrated Bioprocesses 2016 , 159-186	12
		3
217	Production of Fuels and Chemicals from Biomass by Integrated Bioprocesses 2016 , 159-186	
217	Production of Fuels and Chemicals from Biomass by Integrated Bioprocesses 2016 , 159-186 Nutraceuticals (Vitamin C, Carotenoids, Resveratrol) 2016 , 309-336	3
217 216 215	Production of Fuels and Chemicals from Biomass by Integrated Bioprocesses 2016, 159-186 Nutraceuticals (Vitamin C, Carotenoids, Resveratrol) 2016, 309-336 Cell Immobilization: Fundamentals, Technologies, and Applications 2016, 205-235	3 7
217 216 215 214	Production of Fuels and Chemicals from Biomass by Integrated Bioprocesses 2016, 159-186 Nutraceuticals (Vitamin C, Carotenoids, Resveratrol) 2016, 309-336 Cell Immobilization: Fundamentals, Technologies, and Applications 2016, 205-235 Host Organisms: Algae 2016, 605-641	3 7 1
217 216 215 214 213	Production of Fuels and Chemicals from Biomass by Integrated Bioprocesses 2016, 159-186 Nutraceuticals (Vitamin C, Carotenoids, Resveratrol) 2016, 309-336 Cell Immobilization: Fundamentals, Technologies, and Applications 2016, 205-235 Host Organisms: Algae 2016, 605-641 Industrial Microorganisms: Saccharomyces cerevisiae and other Yeasts 2016, 673-686	3 7 1

209	Host Organisms: Myxobacterium 2016 , 453-485	2
208	Extreme Thermophiles as Metabolic Engineering Platforms: Strategies and Current Perspective 2016 , 505-580	3
207	Cyanobacteria as a Host Organism 2016 , 581-604	4
206	Host Organisms: Mammalian Cells 2016 , 643-671	1
205	Synthetic Biology: An Emerging Approach for Strain Engineering 2016 , 85-110	2
204	Toward Genome-Scale Metabolic Pathway Analysis 2016 , 111-123	2
203	Cell-Free Synthetic Systems for Metabolic Engineering and Biosynthetic Pathway Prototyping 2016 , 125-148	9
202	Industrial Biotechnology: Escherichia coli as a Host 2016 , 149-181	5
201	Host Organisms: Bacillus subtilis 2016 , 221-297	6
200	Host Organism: Pseudomonas putida 2016 , 299-326	3
199	Host Organisms: Clostridium acetobutylicum/Clostridium beijerinckii and Related Organisms 2016 , 327-364	
198	Sustainable biorefining in wastewater by engineered extreme alkaliphile Bacillus marmarensis. Scientific Reports, 2016 , 6, 20224 4-9	22
197	Fuelling the future: microbial engineering for the production of sustainable biofuels. <i>Nature Reviews Microbiology</i> , 2016 , 14, 288-304	383
196	Outlook for the Production of Butanol from Cellulolytic Strains of Clostridia 2015 , 291-306	1
195	Consolidated bioprocessing of cellulose to isobutanol using Clostridium thermocellum. <i>Metabolic Engineering</i> , 2015 , 31, 44-52	119
194	An entropy-like index of bifurcational robustness for metabolic systems. <i>Integrative Biology (United Kingdom)</i> , 2015 , 7, 895-903	5
193	Metabolic engineering of cyanobacteria for photosynthetic 3-hydroxypropionic acid production from CO2 using Synechococcus elongatus PCC 7942. <i>Metabolic Engineering</i> , 2015 , 31, 163-70	71
192	Integrative genomic mining for enzyme function to enable engineering of a non-natural biosynthetic pathway. <i>Nature Communications</i> , 2015 , 6, 10005	56

191	Mathematical modeling of the insulin signal transduction pathway for prediction of insulin sensitivity from expression data. <i>Molecular Genetics and Metabolism</i> , 2015 , 114, 66-72	3.7	9
190	Behavior training reverses asymmetry in hippocampal transcriptome of the cav3.2 knockout mice. <i>PLoS ONE</i> , 2015 , 10, e0118832	3.7	6
189	A synthetic anhydrotetracycline-controllable gene expression system in Ralstonia eutropha H16. <i>ACS Synthetic Biology</i> , 2015 , 4, 101-6	5.7	22
188	Isobutanol production at elevated temperatures in thermophilic Geobacillus thermoglucosidasius. <i>Metabolic Engineering</i> , 2014 , 24, 1-8	9.7	82
187	Engineering synergy in biotechnology. <i>Nature Chemical Biology</i> , 2014 , 10, 319-22	11.7	126
186	Consolidated conversion of protein waste into biofuels and ammonia using Bacillus subtilis. <i>Metabolic Engineering</i> , 2014 , 23, 53-61	9.7	70
185	Development of an NADPH-dependent homophenylalanine dehydrogenase by protein engineering. <i>ACS Synthetic Biology</i> , 2014 , 3, 13-20	5.7	22
184	Building carbon-carbon bonds using a biocatalytic methanol condensation cycle. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2014 , 111, 15928-33	11.5	87
183	Ensemble Modeling for Robustness Analysis in engineering non-native metabolic pathways. <i>Metabolic Engineering</i> , 2014 , 25, 63-71	9.7	68
182	Isobutanol production as an alternative metabolic sink to rescue the growth deficiency of the glycogen mutant of Synechococcus elongatus PCC 7942. <i>Photosynthesis Research</i> , 2014 , 120, 301-10	3.7	88
181	A kinetic model of Escherichia coli core metabolism satisfying multiple sets of mutant flux data. <i>Metabolic Engineering</i> , 2014 , 25, 50-62	9.7	131
180	Comprehensive detection of genes causing a phenotype using phenotype sequencing and pathway analysis. <i>PLoS ONE</i> , 2014 , 9, e88072	3.7	3
179	Biological conversion of carbon dioxide to photosynthetic fuels and electrofuels. <i>Energy and Environmental Science</i> , 2013 , 6, 2892	35.4	65
178	A reverse glyoxylate shunt to build a non-native route from C4 to C2 in Escherichia coli. <i>Metabolic Engineering</i> , 2013 , 19, 116-27	9.7	46
177	Protein-based biorefining: metabolic engineering for production of chemicals and fuel with regeneration of nitrogen fertilizers. <i>Applied Microbiology and Biotechnology</i> , 2013 , 97, 1397-406	5.7	26
176	Engineering a synthetic pathway in cyanobacteria for isopropanol production directly from carbon dioxide and light. <i>Metabolic Engineering</i> , 2013 , 20, 101-8	9.7	115
175	Synthetic non-oxidative glycolysis enables complete carbon conservation. <i>Nature</i> , 2013 , 502, 693-7	50.4	233
174	Oxygen-tolerant coenzyme A-acylating aldehyde dehydrogenase facilitates efficient photosynthetic n-butanol biosynthesis in cyanobacteria. <i>Energy and Environmental Science</i> , 2013 , 6, 267	72 ^{35.4}	128

173	Engineering a cyanobacterium as the catalyst for the photosynthetic conversion of CO2 to 1,2-propanediol. <i>Microbial Cell Factories</i> , 2013 , 12, 4	6.4	91
172	Metabolic engineering of 2-pentanone synthesis in Escherichia coli. <i>AICHE Journal</i> , 2013 , 59, 3167-3175	3.6	19
171	Toward a Biological Replacement of Petroleum. ACS Symposium Series, 2013, 1-17	0.4	
170	Protein engineering for metabolic engineering: current and next-generation tools. <i>Biotechnology Journal</i> , 2013 , 8, 545-55	5.6	33
169	Next generation biofuel engineering in prokaryotes. Current Opinion in Chemical Biology, 2013, 17, 462-	79 .7	129
168	Microbial synthesis of n-butanol, isobutanol, and other higher alcohols from diverse resources. <i>Bioresource Technology</i> , 2013 , 135, 339-49	11	157
167	Optimization-driven identification of genetic perturbations accelerates the convergence of model parameters in ensemble modeling of metabolic networks. <i>Biotechnology Journal</i> , 2013 , 8, 1090-104	5.6	22
166	Synergy as design principle for metabolic engineering of 1-propanol production in Escherichia coli. <i>Metabolic Engineering</i> , 2013 , 17, 12-22	9.7	52
165	Genome Sequence of the Extreme Obligate Alkaliphile Bacillus marmarensis Strain DSM 21297. Genome Announcements, 2013 , 1,		7
164	Design and characterization of synthetic fungal-bacterial consortia for direct production of isobutanol from cellulosic biomass. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2013 , 110, 14592-7	11.5	290
163	A selection platform for carbon chain elongation using the CoA-dependent pathway to produce linear higher alcohols. <i>Metabolic Engineering</i> , 2012 , 14, 504-11	9.7	112
162	ATP drives direct photosynthetic production of 1-butanol in cyanobacteria. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2012 , 109, 6018-23	11.5	293
161	A synthetic recursive "+1" pathway for carbon chain elongation. ACS Chemical Biology, 2012, 7, 689-97	4.9	99
160	Toward nitrogen neutral biofuel production. <i>Current Opinion in Biotechnology</i> , 2012 , 23, 406-13	11.4	44
159	Photosynthetic production of 2-methyl-1-butanol from CO2 in cyanobacterium Synechococcus elongatus PCC7942 and characterization of the native acetohydroxyacid synthase. <i>Energy and Environmental Science</i> , 2012 , 5, 9574	35.4	92
158	Determining PTEN functional status by network component deduced transcription factor activities. <i>PLoS ONE</i> , 2012 , 7, e31053	3.7	9
157	Combined inactivation of the Clostridium cellulolyticum lactate and malate dehydrogenase genes substantially increases ethanol yield from cellulose and switchgrass fermentations. <i>Biotechnology for Biofuels</i> , 2012 , 5, 2	7.8	96
156	Integrated electromicrobial conversion of CO2 to higher alcohols. <i>Science</i> , 2012 , 335, 1596	33.3	457

155	Engineering synthetic recursive pathways to generate non-natural small molecules. <i>Nature Chemical Biology</i> , 2012 , 8, 518-26	11.7	46
154	Metabolic ensemble modeling for strain engineers. <i>Biotechnology Journal</i> , 2012 , 7, 343-53	5.6	45
153	Metabolic Engineering of Clostridium cellulolyticum for Production of Isobutanol from Cellulose. <i>Applied and Environmental Microbiology</i> , 2012 , 78, 7171-7171	4.8	6
152	Metabolic engineering of Clostridium cellulolyticum for production of isobutanol from cellulose. <i>Applied and Environmental Microbiology</i> , 2011 , 77, 2727-33	4.8	241
151	Revealing the functions of the transketolase enzyme isoforms in Rhodopseudomonas palustris using a systems biology approach. <i>PLoS ONE</i> , 2011 , 6, e28329	3.7	9
150	Oxidized low-density lipoprotein inhibits nitric oxide-mediated coronary arteriolar dilation by up-regulating endothelial arginase I. <i>Microcirculation</i> , 2011 , 18, 36-45	2.9	34
149	Conversion of proteins into biofuels by engineering nitrogen flux. <i>Nature Biotechnology</i> , 2011 , 29, 346-	51 ₄ .5	232
148	An evolutionary strategy for isobutanol production strain development in Escherichia coli. <i>Metabolic Engineering</i> , 2011 , 13, 674-81	9.7	92
147	Driving forces enable high-titer anaerobic 1-butanol synthesis in Escherichia coli. <i>Applied and Environmental Microbiology</i> , 2011 , 77, 2905-15	4.8	520
146	High-flux isobutanol production using engineered Escherichia coli: a bioreactor study with in situ product removal. <i>Applied Microbiology and Biotechnology</i> , 2011 , 90, 1681-90	5.7	183
145	Redox homeostasis phenotypes in RubisCO-deficient Rhodobacter sphaeroides via ensemble modeling. <i>Biotechnology Progress</i> , 2011 , 27, 15-22	2.8	10
144	Identification of transcription factors perturbed by the synthesis of high levels of a foreign protein in yeast Saccharomyces cerevisiae. <i>Biotechnology Progress</i> , 2011 , 27, 925-36	2.8	3
143	Extending carbon chain length of 1-butanol pathway for 1-hexanol synthesis from glucose by engineered Escherichia coli. <i>Journal of the American Chemical Society</i> , 2011 , 133, 11399-401	16.4	110
142	Reducing the allowable kinetic space by constructing ensemble of dynamic models with the same steady-state flux. <i>Metabolic Engineering</i> , 2011 , 13, 60-75	9.7	44
141	Metabolic engineering of cyanobacteria for 1-butanol production from carbon dioxide. <i>Metabolic Engineering</i> , 2011 , 13, 353-63	9.7	314
140	Phenotype sequencing: identifying the genes that cause a phenotype directly from pooled sequencing of independent mutants. <i>PLoS ONE</i> , 2011 , 6, e16517	3.7	18
139	Systems Approaches to Unraveling Nitric Oxide Response Networks in Prokaryotes 2010 , 103-136		2
138	Evolution, genomic analysis, and reconstruction of isobutanol tolerance in Escherichia coli. <i>Molecular Systems Biology</i> , 2010 , 6, 449	12.2	216

(2009-2010)

137	Expanding metabolism for total biosynthesis of the nonnatural amino acid L-homoalanine. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 6234-9	11.5	118
136	Ensemble modeling of hepatic fatty acid metabolism with a synthetic glyoxylate shunt. <i>Biophysical Journal</i> , 2010 , 98, 1385-95	2.9	17
135	Biofuels: biomolecular engineering fundamentals and advances. <i>Annual Review of Chemical and Biomolecular Engineering</i> , 2010 , 1, 19-36	8.9	51
134	An agar gel membrane-PDMS hybrid microfluidic device for long term single cell dynamic study. <i>Lab on A Chip</i> , 2010 , 10, 2710-9	7.2	21
133	Bioengineering of microorganisms for CIIto CIIto CIIto Control production. Biotechnology Journal, 2010, 5, 1297-	3 9.8	31
132	Engineering the isobutanol biosynthetic pathway in Escherichia coli by comparison of three aldehyde reductase/alcohol dehydrogenase genes. <i>Applied Microbiology and Biotechnology</i> , 2010 , 85, 651-7	5.7	241
131	Pentanol isomer synthesis in engineered microorganisms. <i>Applied Microbiology and Biotechnology</i> , 2010 , 85, 893-9	5.7	97
130	3-Methyl-1-butanol production in Escherichia coli: random mutagenesis and two-phase fermentation. <i>Applied Microbiology and Biotechnology</i> , 2010 , 86, 1155-64	5.7	130
129	Engineering Corynebacterium glutamicum for isobutanol production. <i>Applied Microbiology and Biotechnology</i> , 2010 , 87, 1045-55	5.7	272
128	Trimming of mammalian transcriptional networks using network component analysis. <i>BMC Bioinformatics</i> , 2010 , 11, 511	3.6	10
127	Improvement of isopropanol production by metabolically engineered Escherichia coli using gas stripping. <i>Journal of Bioscience and Bioengineering</i> , 2010 , 110, 696-701	3.3	142
126	Moonlighting function of glycerol kinase causes systems-level changes in rat hepatoma cells. <i>Metabolic Engineering</i> , 2010 , 12, 332-40	9.7	11
125	Acetolactate synthase from Bacillus subtilis serves as a 2-ketoisovalerate decarboxylase for isobutanol biosynthesis in Escherichia coli. <i>Applied and Environmental Microbiology</i> , 2009 , 75, 6306-11	4.8	75
124	An integrated network approach identifies the isobutanol response network of Escherichia coli. <i>Molecular Systems Biology</i> , 2009 , 5, 277	12.2	155
123	Using network component analysis to dissect regulatory networks mediated by transcription factors in yeast. <i>PLoS Computational Biology</i> , 2009 , 5, e1000311	5	26
122	A hidden square-root boundary between growth rate and biomass yield. <i>Biotechnology and Bioengineering</i> , 2009 , 102, 73-80	4.9	18
121	Engineering metabolic systems for production of advanced fuels. <i>Journal of Industrial Microbiology and Biotechnology</i> , 2009 , 36, 471-9	4.2	82
120	Direct photosynthetic recycling of carbon dioxide to isobutyraldehyde. <i>Nature Biotechnology</i> , 2009 , 27, 1177-80	44.5	675

119	Reconstruction of the archaeal isoprenoid ether lipid biosynthesis pathway in Escherichia coli through digeranylgeranylglyceryl phosphate. <i>Metabolic Engineering</i> , 2009 , 11, 184-91	9.7	17
118	Ensemble modeling for strain development of L-lysine-producing Escherichia coli. <i>Metabolic Engineering</i> , 2009 , 11, 221-33	9.7	58
117	Microbial maximal specific growth rate as a square-root function of biomass yield and two kinetic parameters. <i>Metabolic Engineering</i> , 2009 , 11, 409-14	9.7	2
116	Ensemble modeling and related mathematical modeling of metabolic networks. <i>Journal of the Taiwan Institute of Chemical Engineers</i> , 2009 , 40, 595-601	5.3	16
115	Microbial production of advanced transportation fuels in non-natural hosts. <i>Current Opinion in Biotechnology</i> , 2009 , 20, 307-15	11.4	165
114	Resistance to diet-induced obesity in mice with synthetic glyoxylate shunt. <i>Cell Metabolism</i> , 2009 , 9, 525	5 -236 6	28
113	Transcriptomic and network component analysis of glycerol kinase in skeletal muscle using a mouse model of glycerol kinase deficiency. <i>Molecular Genetics and Metabolism</i> , 2009 , 96, 106-12	3.7	14
112	Enantioselective synthesis of pure (R,R)-2,3-butanediol in Escherichia coli with stereospecific secondary alcohol dehydrogenases. <i>Organic and Biomolecular Chemistry</i> , 2009 , 7, 3914-7	3.9	103
111	Ensemble modeling for aromatic production in Escherichia coli. <i>PLoS ONE</i> , 2009 , 4, e6903	3.7	44
110	Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. <i>Nature</i> , 2008 , 451, 86-9	50.4	1488
110		50.4	1488
	2008 , 451, 86-9		<u>'</u>
109	2008, 451, 86-9 Ensemble modeling of metabolic networks. <i>Biophysical Journal</i> , 2008, 95, 5606-17 Interactions of nitrosylhemoglobin and carboxyhemoglobin with erythrocyte. <i>Nitric Oxide - Biology</i>	2.9	<u>'</u>
109	Ensemble modeling of metabolic networks. <i>Biophysical Journal</i> , 2008 , 95, 5606-17 Interactions of nitrosylhemoglobin and carboxyhemoglobin with erythrocyte. <i>Nitric Oxide - Biology and Chemistry</i> , 2008 , 18, 122-35 Global metabolic effects of glycerol kinase overexpression in rat hepatoma cells. <i>Molecular Genetics</i>	2.9	190
109	Ensemble modeling of metabolic networks. <i>Biophysical Journal</i> , 2008 , 95, 5606-17 Interactions of nitrosylhemoglobin and carboxyhemoglobin with erythrocyte. <i>Nitric Oxide - Biology and Chemistry</i> , 2008 , 18, 122-35 Global metabolic effects of glycerol kinase overexpression in rat hepatoma cells. <i>Molecular Genetics and Metabolism</i> , 2008 , 93, 145-59 An information theoretic exploratory method for learning patterns of conditional gene coexpression from microarray data. <i>IEEE/ACM Transactions on Computational Biology and</i>	2.9 5 3.7	190
109 108 107	Ensemble modeling of metabolic networks. <i>Biophysical Journal</i> , 2008 , 95, 5606-17 Interactions of nitrosylhemoglobin and carboxyhemoglobin with erythrocyte. <i>Nitric Oxide - Biology and Chemistry</i> , 2008 , 18, 122-35 Global metabolic effects of glycerol kinase overexpression in rat hepatoma cells. <i>Molecular Genetics and Metabolism</i> , 2008 , 93, 145-59 An information theoretic exploratory method for learning patterns of conditional gene coexpression from microarray data. <i>IEEE/ACM Transactions on Computational Biology and Bioinformatics</i> , 2008 , 5, 15-24 Expanding metabolism for biosynthesis of nonnatural alcohols. <i>Proceedings of the National</i>	2.9 5 3.7	190 25 11
109108107106105	Ensemble modeling of metabolic networks. <i>Biophysical Journal</i> , 2008 , 95, 5606-17 Interactions of nitrosylhemoglobin and carboxyhemoglobin with erythrocyte. <i>Nitric Oxide - Biology and Chemistry</i> , 2008 , 18, 122-35 Global metabolic effects of glycerol kinase overexpression in rat hepatoma cells. <i>Molecular Genetics and Metabolism</i> , 2008 , 93, 145-59 An information theoretic exploratory method for learning patterns of conditional gene coexpression from microarray data. <i>IEEE/ACM Transactions on Computational Biology and Bioinformatics</i> , 2008 , 5, 15-24 Expanding metabolism for biosynthesis of nonnatural alcohols. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2008 , 105, 20653-8 Engineering of an Escherichia coli strain for the production of 3-methyl-1-butanol. <i>Applied and</i>	2.9 5 3.7 3	190 25 11 326

101	Production of 2-methyl-1-butanol in engineered Escherichia coli. <i>Applied Microbiology and Biotechnology</i> , 2008 , 81, 89-98	5.7	136
100	Metabolic engineering for advanced biofuels production from Escherichia coli. <i>Current Opinion in Biotechnology</i> , 2008 , 19, 414-9	11.4	252
99	Metabolic engineering of Escherichia coli for 1-butanol production. <i>Metabolic Engineering</i> , 2008 , 10, 30	5• 9 . 9	686
98	Transfer of the high-GC cyclohexane carboxylate degradation pathway from Rhodopseudomonas palustris to Escherichia coli for production of biotin. <i>Metabolic Engineering</i> , 2008 , 10, 131-40	9.7	1
97	Metabolic engineering of Escherichia coli for 1-butanol and 1-propanol production via the keto-acid pathways. <i>Metabolic Engineering</i> , 2008 , 10, 312-20	9.7	312
96	Engineering Cellular Metabolism. <i>FASEB Journal</i> , 2008 , 22, 529.1	0.9	
95	Network-based identification of critical transcription regulators in the metabolic syndrome in mice. <i>FASEB Journal</i> , 2008 , 22, 797.1	0.9	
94	Glycerol kinase deficiency alters expression of genes involved in lipid metabolism, carbohydrate metabolism, and insulin signaling. <i>European Journal of Human Genetics</i> , 2007 , 15, 646-57	5.3	46
93	Nitric oxide metabolism in adults with cyanotic congenital heart disease. <i>American Journal of Cardiology</i> , 2007 , 99, 691-5	3	11
92	Engineered synthetic pathway for isopropanol production in Escherichia coli. <i>Applied and Environmental Microbiology</i> , 2007 , 73, 7814-8	4.8	225
91	Directed evolution of ribosomal protein S1 for enhanced translational efficiency of high GC Rhodopseudomonas palustris DNA in Escherichia coli. <i>Journal of Biological Chemistry</i> , 2007 , 282, 18929	-3⁄6 ⁴	17
90	Differential association of hemoglobin with proinflammatory high density lipoproteins in atherogenic/hyperlipidemic mice. A novel biomarker of atherosclerosis. <i>Journal of Biological Chemistry</i> , 2007 , 282, 23698-707	5.4	61
89	Biological network mapping and source signal deduction. <i>Bioinformatics</i> , 2007 , 23, 1783-91	7.2	8
88	Integrated network analysis identifies nitric oxide response networks and dihydroxyacid dehydratase as a crucial target in Escherichia coli. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2007 , 104, 8484-9	11.5	117
87	Single-cell zeroth-order protein degradation enhances the robustness of synthetic oscillator. <i>Molecular Systems Biology</i> , 2007 , 3, 130	12.2	59
86	Dynamic Cell and Microparticle Control via Optoelectronic Tweezers. <i>Journal of Microelectromechanical Systems</i> , 2007 , 16, 491-499	2.5	109
85	Targeted disruption of glycerol kinase gene in mice: expression analysis in liver shows alterations in network partners related to glycerol kinase activity. <i>Human Molecular Genetics</i> , 2006 , 15, 405-15	5.6	29
84	A Gibbs sampler for the identification of gene expression and network connectivity consistency. <i>Bioinformatics</i> , 2006 , 22, 3040-6	7.2	15

83	Transcriptome network component analysis with limited microarray data. <i>Bioinformatics</i> , 2006 , 22, 188	6 - 9. 1	49
82	Versatility and connectivity efficiency of bipartite transcription networks. <i>Biophysical Journal</i> , 2006 , 91, 2749-59	2.9	5
81	Rhodopseudomonas palustris CGA009 has two functional ppsR genes, each of which encodes a repressor of photosynthesis gene expression. <i>Biochemistry</i> , 2006 , 45, 14441-51	3.2	27
80	Single-gene disorders: what role could moonlighting enzymes play?. <i>American Journal of Human Genetics</i> , 2005 , 76, 911-24	11	168
79	A generalized framework for network component analysis. <i>IEEE/ACM Transactions on Computational Biology and Bioinformatics</i> , 2005 , 2, 289-301	3	30
78	Erythrocyte nitric oxide transport reduced by a submembrane cytoskeletal barrier. <i>Biochimica Et Biophysica Acta - General Subjects</i> , 2005 , 1723, 135-42	4	43
77	Markov Chain modeling of pyelonephritis-associated pili expression in uropathogenic Escherichia coli. <i>Biophysical Journal</i> , 2005 , 88, 2541-53	2.9	7
76	Transcriptional regulation and metabolism. <i>Biochemical Society Transactions</i> , 2005 , 33, 1423-6	5.1	7
75	gNCA: a framework for determining transcription factor activity based on transcriptome: identifiability and numerical implementation. <i>Metabolic Engineering</i> , 2005 , 7, 128-41	9.7	79
74	Determination of functional interactions among signalling pathways in Escherichia coli K-12. <i>Metabolic Engineering</i> , 2005 , 7, 280-90	9.7	13
73	A synthetic gene-metabolic oscillator. <i>Nature</i> , 2005 , 435, 118-22	50.4	314
72	Inferring yeast cell cycle regulators and interactions using transcription factor activities. <i>BMC Genomics</i> , 2005 , 6, 90	4.5	52
71	Analysis of nitric oxide donor effectiveness in resistance vessels. <i>American Journal of Physiology - Heart and Circulatory Physiology</i> , 2005 , 288, H2390-9	5.2	7
70	Heat shock response of Archaeoglobus fulgidus. <i>Journal of Bacteriology</i> , 2005 , 187, 6046-57	3.5	47
69	A global regulatory role of gluconeogenic genes in Escherichia coli revealed by transcriptome network analysis. <i>Journal of Biological Chemistry</i> , 2005 , 280, 36079-87	5.4	63
68	Vocabulon: a dictionary model approach for reconstruction and localization of transcription factor binding sites. <i>Bioinformatics</i> , 2005 , 21, 922-31	7.2	19
67	Transcriptome-based determination of multiple transcription regulator activities in Escherichia coli by using network component analysis. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2004 , 101, 641-6	11.5	108
66	Stochastic modeling of the phase-variable pap operon regulation in uropathogenic Escherichia coli. <i>Biotechnology and Bioengineering</i> , 2004 , 88, 189-203	4.9	11

(2001-2004)

65	Network component analysis of Saccharamyces cerevisiae stress response. <i>Annual International Conference of the IEEE Engineering in Medicine and Biology Society</i> , 2004 , 2004, 2937-40		1
64	Design of artificial cell-cell communication using gene and metabolic networks. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2004 , 101, 2299-304	11.5	137
63	Reductive nitrosylation and S-nitrosation of hemoglobin in inhomogeneous nitric oxide solutions. <i>Nitric Oxide - Biology and Chemistry</i> , 2004 , 10, 74-82	5	8
62	Network component analysis: reconstruction of regulatory signals in biological systems. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2003 , 100, 15522-7	11.5	462
61	A perspective of metabolic engineering strategies: moving up the systems hierarchy. <i>Biotechnology and Bioengineering</i> , 2003 , 84, 815-21	4.9	24
60	Analysis of nitric oxide consumption by erythrocytes in blood vessels using a distributed multicellular model. <i>Annals of Biomedical Engineering</i> , 2003 , 31, 294-309	4.7	35
59	A software package for cDNA microarray data normalization and assessing confidence intervals. <i>OMICS A Journal of Integrative Biology</i> , 2003 , 7, 227-34	3.8	16
58	Regulation of nitric oxide consumption by hypoxic red blood cells. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2003 , 100, 12504-9	11.5	49
57	A memorial review of Jay Bailey@contribution in prokaryotic metabolic engineering. <i>Biotechnology and Bioengineering</i> , 2002 , 79, 504-8	4.9	2
56	Nitric oxide is consumed, rather than conserved, by reaction with oxyhemoglobin under physiological conditions. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2002 , 99, 10341-6	11.5	180
55	Global expression profiling of acetate-grown Escherichia coli. <i>Journal of Biological Chemistry</i> , 2002 , 277, 13175-83	5.4	225
54	Co-expression pattern from DNA microarray experiments as a tool for operon prediction. <i>Nucleic Acids Research</i> , 2002 , 30, 2886-93	20.1	98
53	Nitric oxide reaction with red blood cells and hemoglobin under heterogeneous conditions. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2002 , 99, 7763-8	11.5	85
52	A Multi-Cellular Distributed Model for Nitric Oxide Transport in the Blood. <i>Computer Aided Chemical Engineering</i> , 2002 , 877-882	0.6	
51	Metabolic engineering of isoprenoids. <i>Metabolic Engineering</i> , 2001 , 3, 27-39	9.7	78
50	Acetate-inducible protein overexpression from the glnAp2 promoter of Escherichia coli. <i>Biotechnology and Bioengineering</i> , 2001 , 75, 504-9	4.9	3
49	Precursor balancing for metabolic engineering of lycopene production in Escherichia coli. <i>Biotechnology Progress</i> , 2001 , 17, 57-61	2.8	165
48	Issues in cDNA microarray analysis: quality filtering, channel normalization, models of variations and assessment of gene effects. <i>Nucleic Acids Research</i> , 2001 , 29, 2549-57	20.1	410

47	Modulation of nitric oxide bioavailability by erythrocytes. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2001 , 98, 11771-6	11.5	151
46	Alteration of product specificity of Rhodobacter sphaeroides phytoene desaturase by directed evolution. <i>Journal of Biological Chemistry</i> , 2001 , 276, 41161-4	5.4	31
45	Erythrocyte consumption of nitric oxide: competition experiment and model analysis. <i>Nitric Oxide - Biology and Chemistry</i> , 2001 , 5, 18-31	5	76
44	Microbial pathway engineering for industrial processes: evolution, combinatorial biosynthesis and rational design. <i>Current Opinion in Microbiology</i> , 2001 , 4, 330-5	7.9	45
43	DNA microarray detection of metabolic responses to protein overproduction in Escherichia coli. <i>Metabolic Engineering</i> , 2000 , 2, 201-9	9.7	76
42	Improving lycopene production in Escherichia coli by engineering metabolic control. <i>Nature Biotechnology</i> , 2000 , 18, 533-7	44.5	433
41	Gene expression profiling by DNA microarrays and metabolic fluxes in Escherichia coli. <i>Biotechnology Progress</i> , 2000 , 16, 278-86	2.8	109
40	Directed evolution of metabolically engineered Escherichia coli for carotenoid production. <i>Biotechnology Progress</i> , 2000 , 16, 922-6	2.8	93
39	oxLDL specifically impairs endothelium-dependent, NO-mediated dilation of coronary arterioles. <i>American Journal of Physiology - Heart and Circulatory Physiology</i> , 2000 , 278, H175-83	5.2	71
38	Erythrocytes possess an intrinsic barrier to nitric oxide consumption. <i>Journal of Biological Chemistry</i> , 2000 , 275, 2342-8	5.4	181
37	Regulation and Redirection of Metabolism: Incorporating regulatory information influx calculation 2000 , 49-56		
36	Intravascular flow decreases erythrocyte consumption of nitric oxide. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 1999 , 96, 8757-61	11.5	263
35	Toward predicting metabolic fluxes in metabolically engineered strains. <i>Metabolic Engineering</i> , 1999 , 1, 214-23	9.7	13
34	Engineered isoprenoid pathway enhances astaxanthin production in Escherichia coli. <i>Biotechnology and Bioengineering</i> , 1999 , 62, 235-41	4.9	136
33	Incorporating qualitative knowledge in enzyme kinetic models using fuzzy logic. <i>Biotechnology and Bioengineering</i> , 1999 , 62, 722-9	4.9	26
32	Inverse flux analysis. <i>Journal of Biotechnology</i> , 1999 , 71, 259-262	3.7	1
31	Flux calculation using metabolic control constraints. <i>Biotechnology Progress</i> , 1998 , 14, 554-60	2.8	9
30	Lipopolysaccharide activates endothelial nitric oxide synthase through protein tyrosine kinase. <i>Biochemical and Biophysical Research Communications</i> , 1998 , 245, 33-7	3.4	24

29	Estimation of nitric oxide production and reaction rates in tissue by use of a mathematical model. <i>American Journal of Physiology - Heart and Circulatory Physiology</i> , 1998 , 274, H2163-76	5.2	195
28	Arginase modulates nitric oxide production in activated macrophages. <i>American Journal of Physiology - Heart and Circulatory Physiology</i> , 1998 , 274, H342-8	5.2	121
27	Effective diffusion distance of nitric oxide in the microcirculation. <i>American Journal of Physiology - Heart and Circulatory Physiology</i> , 1998 , 274, H1705-14	5.2	128
26	Inverse flux analysis for reduction of acetate excretion in Escherichia coli. <i>Biotechnology Progress</i> , 1997 , 13, 361-7	2.8	58
25	Metabolic engineering and control analysis for production of aromatics: Role of transaldolase. <i>Biotechnology and Bioengineering</i> , 1997 , 53, 132-8	4.9	42
24	Downregulation of endothelial constitutive nitric oxide synthase expression by lipopolysaccharide. <i>Biochemical and Biophysical Research Communications</i> , 1996 , 225, 1-5	3.4	91
23	Effects of ultraviolet light irradiation in biotreatment of organophosphates. <i>Applied Biochemistry and Biotechnology</i> , 1996 , 56, 37-47	3.2	21
22	Pathway analysis, engineering, and physiological considerations for redirecting central metabolism. <i>Biotechnology and Bioengineering</i> , 1996 , 52, 129-40	4.9	147
21	Progress in metabolic engineering. Current Opinion in Biotechnology, 1996, 7, 198-204	11.4	9
20	Control of metabolic pathways by time-scale separation. <i>BioSystems</i> , 1995 , 36, 55-70	1.9	28
19	A mutant phosphoenolpyruvate carboxykinase in Escherichia coli conferring oxaloacetate		
	decarboxylase activity. <i>Journal of Bacteriology</i> , 1995 , 177, 1620-3	3.5	11
18		3·5 4·9	110
	decarboxylase activity. <i>Journal of Bacteriology</i> , 1995 , 177, 1620-3 Pathway engineering for production of aromatics in Escherichia coli: Confirmation of stoichiometric analysis by independent modulation of AroG, TktA, and Pps activities. <i>Biotechnology and</i>		
18	decarboxylase activity. <i>Journal of Bacteriology</i> , 1995 , 177, 1620-3 Pathway engineering for production of aromatics in Escherichia coli: Confirmation of stoichiometric analysis by independent modulation of AroG, TktA, and Pps activities. <i>Biotechnology and Bioengineering</i> , 1995 , 46, 361-70 Alteration of the biochemical valves in the central metabolism of Escherichia coli. <i>Annals of the New</i>	4.9	110
18	decarboxylase activity. <i>Journal of Bacteriology</i> , 1995 , 177, 1620-3 Pathway engineering for production of aromatics in Escherichia coli: Confirmation of stoichiometric analysis by independent modulation of AroG, TktA, and Pps activities. <i>Biotechnology and Bioengineering</i> , 1995 , 46, 361-70 Alteration of the biochemical valves in the central metabolism of Escherichia coli. <i>Annals of the New York Academy of Sciences</i> , 1994 , 745, 21-34 Heterologous protein expression affects the death kinetics of baculovirus-infected insect cell	4.9 6.5	110
18 17 16	decarboxylase activity. <i>Journal of Bacteriology</i> , 1995 , 177, 1620-3 Pathway engineering for production of aromatics in Escherichia coli: Confirmation of stoichiometric analysis by independent modulation of AroG, TktA, and Pps activities. <i>Biotechnology and Bioengineering</i> , 1995 , 46, 361-70 Alteration of the biochemical valves in the central metabolism of Escherichia coli. <i>Annals of the New York Academy of Sciences</i> , 1994 , 745, 21-34 Heterologous protein expression affects the death kinetics of baculovirus-infected insect cell cultures: a quantitative study by use of n-target theory. <i>Biotechnology Progress</i> , 1994 , 10, 55-9 Experimental determination of flux control distribution in biochemical systems: in vitro model to	4.9 6.5 2.8	110 19 14
18 17 16	Pathway engineering for production of aromatics in Escherichia coli: Confirmation of stoichiometric analysis by independent modulation of AroG, TktA, and Pps activities. <i>Biotechnology and Bioengineering</i> , 1995 , 46, 361-70 Alteration of the biochemical valves in the central metabolism of Escherichia coli. <i>Annals of the New York Academy of Sciences</i> , 1994 , 745, 21-34 Heterologous protein expression affects the death kinetics of baculovirus-infected insect cell cultures: a quantitative study by use of n-target theory. <i>Biotechnology Progress</i> , 1994 , 10, 55-9 Experimental determination of flux control distribution in biochemical systems: in vitro model to analyze transient metabolite concentrations. <i>Biotechnology and Bioengineering</i> , 1993 , 41, 1121-8 Control of gluconeogenic growth by pps and pck in Escherichia coli. <i>Journal of Bacteriology</i> , 1993 ,	4.9 6.5 2.8 4.9	110 19 14 21

11	Advances in Metabolic Control Analysis. <i>Biotechnology Progress</i> , 1993 , 9, 221-233	2.8	65
10	Stimulation of glucose catabolism in Escherichia coli by a potential futile cycle. <i>Journal of Bacteriology</i> , 1992 , 174, 7527-32	3.5	80
9	Dynamic metabolic control theory. A methodology for investigating metabolic regulation using transient metabolic data. <i>Annals of the New York Academy of Sciences</i> , 1992 , 665, 27-38	6.5	7
8	Identifying Rate-Controlling Enzymes in Metabolic Pathways without Kinetic Parameters. <i>Biotechnology Progress</i> , 1991 , 7, 15-20	2.8	34
7	Effect of ice nucleators on snow making and spray freezing. <i>Industrial & Engineering Chemistry Research</i> , 1990 , 29, 361-366	3.9	24
6	Fermentation data analysis and state estimation in the presence of incomplete mass balance. <i>Biotechnology and Bioengineering</i> , 1989 , 33, 613-22	4.9	25
5	Characteristic reaction paths of biochemical reaction systems with time scale separation. <i>Biotechnology and Bioengineering</i> , 1988 , 31, 847-54	4.9	22
4	Application of characteristic reaction paths: Rate-limiting capability of phosphofructokinase in yeast fermentation. <i>Biotechnology and Bioengineering</i> , 1988 , 31, 855-68	4.9	20
3	Lumping analysis of biochemical reaction systems with time scale separation. <i>Biotechnology and Bioengineering</i> , 1988 , 31, 869-79	4.9	33
2	Extending the quasi-steady state concept to analysis of metabolic networks. <i>Journal of Theoretical Biology</i> , 1987 , 126, 253-73	2.3	18

The Synthetic Approach for Regulatory and Metabolic Circuits467-488