Manuel Mazo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4588044/publications.pdf Version: 2024-02-01

MANUEL MAZO

#	Article	IF	CITATIONS
1	A Fibrosis Biomarker Early Predicts Cardiotoxicity Due to Anthracycline-Based Breast Cancer Chemotherapy. Cancers, 2022, 14, 2941.	1.7	4
2	Engineering and Assessing Cardiac Tissue Complexity. International Journal of Molecular Sciences, 2021, 22, 1479.	1.8	13
3	Multiplexing physical stimulation on single human induced pluripotent stem cell-derived cardiomyocytes for phenotype modulation. Biofabrication, 2021, 13, 025004.	3.7	12
4	In Silico Electrophysiological Evaluation of Scaffold Geometries for Cardiac Tissue Engineering. , 2021, , .		1
5	Engineering a Humanised Niche to Support Human Haematopoiesis in Mice: Novel Opportunities in Modelling Cancer. Cancers, 2020, 12, 2205.	1.7	3
6	Cells, Materials, and Fabrication Processes for Cardiac Tissue Engineering. Frontiers in Bioengineering and Biotechnology, 2020, 8, 955.	2.0	32
7	Exploring the inner environment of protein hydrogels with fluorescence spectroscopy towards understanding their drug delivery capabilities. Journal of Materials Chemistry B, 2020, 8, 6964-6974.	2.9	14
8	Activatable cell–biomaterial interfacing with photo-caged peptides. Chemical Science, 2019, 10, 1158-1167.	3.7	21
9	Long-Term Engraftment of Human Cardiomyocytes Combined with Biodegradable Microparticles Induces Heart Repair. Journal of Pharmacology and Experimental Therapeutics, 2019, 370, 761-771.	1.3	22
10	Surface Dynamics and Ligand–Core Interactions of Quantum Sized Photoluminescent Gold Nanoclusters. Journal of the American Chemical Society, 2018, 140, 18217-18226.	6.6	54
11	Elastic serum-albumin based hydrogels: mechanism of formation and application in cardiac tissue engineering. Journal of Materials Chemistry B, 2018, 6, 5604-5612.	2.9	40
12	Facet-Dependent Interactions of Islet Amyloid Polypeptide with Gold Nanoparticles: Implications for Fibril Formation and Peptide-Induced Lipid Membrane Disruption. Chemistry of Materials, 2017, 29, 1550-1560.	3.2	35
13	Generation and characterization of human iPSC line generated from mesenchymal stem cells derived from adipose tissue. Stem Cell Research, 2016, 16, 20-23.	0.3	13
14	Active loading into extracellular vesicles significantly improves the cellular uptake and photodynamic effect of porphyrins. Journal of Controlled Release, 2015, 205, 35-44.	4.8	511
15	Mesenchymal Stem Cells and Cardiovascular Disease: A Bench to Bedside Roadmap. Stem Cells International, 2012, 2012, 1-11.	1.2	32
16	Treatment of Reperfused Ischemia with Adipose-Derived Stem Cells in a Preclinical Swine Model of Myocardial Infarction. Cell Transplantation, 2012, 21, 2723-2733.	1.2	83
17	Adipose Stromal Vascular Fraction Improves Cardiac Function in Chronic Myocardial Infarction through Differentiation and Paracrine Activity. Cell Transplantation, 2012, 21, 1023-1037.	1.2	40
18	Adipose-derived Stem Cells for Myocardial Infarction. Journal of Cardiovascular Translational Research, 2011, 4, 145-153.	1.1	58

MANUEL MAZO

#	Article	IF	CITATIONS
19	Transplantation of Mesenchymal Stem Cells Exerts a Greater Long-Term Effect than Bone Marrow Mononuclear Cells in a Chronic Myocardial Infarction Model in Rat. Cell Transplantation, 2010, 19, 313-328.	1.2	70
20	Stem Cell Therapy for Chronic Myocardial Infarction. Journal of Cardiovascular Translational Research, 2010, 3, 79-88.	1.1	17
21	Transplantation of adipose derived stromal cells is associated with functional improvement in a rat model of chronic myocardial infarction. European Journal of Heart Failure, 2008, 10, 454-462.	2.9	188