## Alexander A Gusev

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4587830/publications.pdf Version: 2024-02-01



| # | Article                                                                                                                | IF  | CITATIONS |
|---|------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1 | On Scaling of Earthquake Riseâ€īime Estimates. Bulletin of the Seismological Society of America, 2019, 109, 2741-2745. | 2.3 | 2         |

Progressive reactivation of the volcanic plumbing system beneath Tolbachik volcano (Kamchatka,) Tj ETQq0 0 0 rgBT/Overlock 10 Tf 50  $\frac{21}{21}$ 

| 3  | Random kinematics of unbounded earthquake rupture propagation simulated using a cellular model.<br>Geophysical Journal International, 2018, 215, 924-941.                                              | 2.4  | 3  |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|----|
| 4  | Determination of corner frequencies of source spectra for subduction earthquakes in Avacha Gulf<br>(Kamchatka). Russian Geology and Geophysics, 2017, 58, 844-854.                                     | 0.7  | 4  |
| 5  | The character of scaling earthquake source spectra for Kamchatka in the 3.5–6.5 magnitude range.<br>Doklady Earth Sciences, 2017, 472, 211-214.                                                        | 0.7  | 0  |
| 6  | A regional surface wave magnitude scale for the earthquakes of Russia's Far East. Izvestiya, Physics of the Solid Earth, 2017, 53, 58-68.                                                              | 0.9  | 0  |
| 7  | Characteristic scale of heterogeneity of seismically active fault and its manifestation in scaling of earthquake source spectra. Doklady Earth Sciences, 2016, 470, 1104-1108.                         | 0.7  | 0  |
| 8  | Regional long-period magnitude scales and their capabilities for tsunami warning. Izvestiya -<br>Atmospheric and Oceanic Physics, 2016, 52, 797-805.                                                   | 0.9  | 1  |
| 9  | The evolving interaction of low-frequency earthquakes during transient slip. Science Advances, 2016, 2, e1501616.                                                                                      | 10.3 | 31 |
| 10 | Source Spectra of Near Kamchatka Earthquakes: Recovering them from S-Wave Spectra, and<br>Determination of Scaling for Three Corner Frequencies. Pure and Applied Geophysics, 2016, 173,<br>1539-1557. | 1.9  | 6  |
| 11 | Shear wave attenuation estimated from the spectral decay rate in the vicinity of the Petropavlovsk station, Kamchatka. Izvestiya, Physics of the Solid Earth, 2016, 52, 503-519.                       | 0.9  | 7  |
| 12 | Broadband NDSHA computations and earthquake ground motion observations for the Italian territory. International Journal of Earthquake and Impact Engineering, 2016, 1, 131.                            | 0.3  | 13 |
| 13 | Correlative relationships between tsunami height and strong ground motion parameters: Japanese earthquakes. Journal of Volcanology and Seismology, 2015, 9, 387-401.                                   | 0.7  | 2  |
| 14 | The impacts of the M W 8.3 Sea of Okhotsk earthquake of May 24, 2013 in Kamchatka and worldwide.<br>Journal of Volcanology and Seismology, 2015, 9, 223-241.                                           | 0.7  | 10 |
| 15 | Scaling properties of corner frequencies of Kamchatka earthquakes. Doklady Earth Sciences, 2014, 458, 1112-1115.                                                                                       | 0.7  | 7  |
| 16 | Doubly Stochastic Earthquake Source Model: "Omega-Square―Spectrum and Low High-Frequency<br>Directivity Revealed by Numerical Experiments. Pure and Applied Geophysics, 2014, 171, 2581-2599.          | 1.9  | 9  |
| 17 | The fractal structure of the sequence of volcanic eruptions worldwide: Order clustering of events and episodic discharge of material. Journal of Volcanology and Seismology, 2014, 8, 34-53.           | 0.7  | 5  |
| 18 | High-Frequency Radiation from an Earthquake Fault: A Review and a Hypothesis of Fractal Rupture<br>Front Geometry. Pure and Applied Geophysics, 2013, 170, 65-93.                                      | 1.9  | 35 |

Alexander A Gusev

| #  | Article                                                                                                                                                                                                                                       | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | A fractal earthquake source with a slip zone generates acceleration time histories with flat spectra.<br>Doklady Earth Sciences, 2013, 448, 211-213.                                                                                          | 0.7 | 2         |
| 20 | Statistics of the values of a normalized slip in the points of an earthquake fault. Izvestiya, Physics of the Solid Earth, 2011, 47, 176-185.                                                                                                 | 0.9 | 11        |
| 21 | Broadband Kinematic Stochastic Simulation of an Earthquake Source: a Refined Procedure for Application in Seismic Hazard Studies. Pure and Applied Geophysics, 2011, 168, 155-200.                                                            | 1.9 | 38        |
| 22 | The geometry and temporal structure of a high frequency source: The Olyutorskii earthquake of April 20, 2006. Journal of Volcanology and Seismology, 2010, 4, 116-125.                                                                        | 0.7 | 2         |
| 23 | The ground motion excited by the Olyutorskii earthquake of April 20, 2006 and by its aftershocks based on digital recordings. Journal of Volcanology and Seismology, 2010, 4, 126-138.                                                        | 0.7 | 10        |
| 24 | Approximate Stochastic Self-Similarity of Envelopes of High-Frequency Teleseismic P-Waves from Large<br>Earthquakes. Pure and Applied Geophysics, 2010, 167, 1343-1363.                                                                       | 1.9 | 3         |
| 25 | Modeling of the ground motion for the Petropavlovsk earthquake of November 24, 1971 (M = 7.6).<br>Izvestiya, Physics of the Solid Earth, 2009, 45, 395-405.                                                                                   | 0.9 | 3         |
| 26 | Broadband Simulation of Earthquake Ground Motion by a Spectrum-Matching, Multiple-Pulse<br>Technique. Earthquake Spectra, 2009, 25, 257-276.                                                                                                  | 3.1 | 10        |
| 27 | On the reality of the 56-year cycle and the increased probability of large earthquakes for<br>Petropavlovsk-Kamchatskii during the period 2008–2011 according to lunar cyclicity. Journal of<br>Volcanology and Seismology, 2008, 2, 424-434. | 0.7 | 5         |
| 28 | Temporal structure of the global sequence of volcanic eruptions: Order clustering and intermittent discharge rate. Physics of the Earth and Planetary Interiors, 2008, 166, 203-218.                                                          | 1.9 | 18        |
| 29 | Low-Frequency Seismic Ground Motion At The Pier Positions Of The Planned Messina Straits Bridge<br>For A Realistic Earthquake Scenario. AIP Conference Proceedings, 2008, , .                                                                 | 0.4 | 2         |
| 30 | Size and duration of the high-frequency radiator in the source of the 2004 December 26 Sumatra earthquake. Geophysical Journal International, 2007, 170, 1119-1128.                                                                           | 2.4 | 8         |
| 31 | Correlation Between Local Slip Rate and Local High-frequency Seismic Radiation in an Earthquake<br>Fault. Pure and Applied Geophysics, 2006, 163, 1305-1325.                                                                                  | 1.9 | 6         |
| 32 | Inversion of the high-frequency source radiation of M6.8 Avachinsky Gulf, Kamchatka, earthquake<br>using empirical and theoretical envelope Green functions. Earth, Planets and Space, 2004, 56, 921-925.                                     | 2.5 | 3         |
| 33 | Source scaling of intermediate-depth Vrancea earthquakes. Geophysical Journal International, 2002,<br>151, 879-889.                                                                                                                           | 2.4 | 42        |
| 34 | Preliminary determination of the interdependence among strong-motion amplitude, earthquake<br>magnitude and hypocentral distance for the Himalayan region. Geophysical Journal International,<br>2001, 144, 577-596.                          | 2.4 | 33        |
| 35 | Preliminary analysis of deformation at the Eurasia-Pacific-North America plate junction from GPS data. Geophysical Journal International, 2001, 147, 189-198.                                                                                 | 2.4 | 34        |
| 36 | Vertical profile of effective turbidity reconstructed from broadening of incoherent body-wave<br>pulses-I. General approach and the inversion procedure. Geophysical Journal International, 1999, 136,<br>295-308.                            | 2.4 | 33        |

| #  | Article                                                                                                                                                                                                 | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Vertical profile of effective turbidity reconstructed from broadening of incoherent body-wave pulses-II.Application to Kamchatka data. Geophysical Journal International, 1999, 136, 309-323.           | 2.4 | 40        |
| 38 | Earthquake precursors: banished forever?. Eos, 1998, 79, 71-71.                                                                                                                                         | 0.1 | 8         |
| 39 | Reply [to Comment on Earthquake precursors: Banished forever?] Comment: Unpredictability of earthquakes-Truth or fiction?. Eos, 1998, 79, 373-373.                                                      | 0.1 | 0         |
| 40 | Title is missing!. Journal of Seismology, 1997, 1, 341-355.                                                                                                                                             | 1.3 | 12        |
| 41 | Simulated envelopes of non-isotropically scattered body waves as compared to observed ones:<br>another manifestation of fractal heterogeneity. Geophysical Journal International, 1996, 127, 49-60.     | 2.4 | 80        |
| 42 | Vertical profile of turbidity and codaQ. Geophysical Journal International, 1995, 123, 665-672.                                                                                                         | 2.4 | 78        |
| 43 | Baylike and continuous variations of the relative level of the late coda during 24 years of observation on Kamchatka. Journal of Geophysical Research, 1995, 100, 20311-20319.                          | 3.3 | 7         |
| 44 | On relations between earthquake population and asperity population on a fault. Tectonophysics, 1992, 211, 85-98.                                                                                        | 2.2 | 11        |
| 45 | Deconvolution of squared velocity waveform as applied to the study of a noncoherent short-period radiator in the earthquake source. Pure and Applied Geophysics, 1991, 136, 235-244.                    | 1.9 | 23        |
| 46 | Intermagnitude relationships and asperity statistics. Pure and Applied Geophysics, 1991, 136, 515-527.                                                                                                  | 1.9 | 20        |
| 47 | Estimation of scattering properties of lithosphere of Kamchatka based on Monte-Carlo simulation of record envelope of a near earthquake. Physics of the Earth and Planetary Interiors, 1990, 64, 52-67. | 1.9 | 123       |
| 48 | Multiasperity fault model and the nature of short-period subsources. Pure and Applied Geophysics, 1989, 130, 635-660.                                                                                   | 1.9 | 33        |
| 49 | Two dilatancy-based models to explain coda-wave precursors and P/S spectral ratio. Tectonophysics, 1988, 152, 227-237.                                                                                  | 2.2 | 6         |
| 50 | Determination of space-time structure of a deep earthquake source by means of power moments.<br>Tectonophysics, 1988, 152, 319-334.                                                                     | 2.2 | 17        |
| 51 | Monte-Carlo simulation of record envelope of a near earthquake. Physics of the Earth and Planetary<br>Interiors, 1987, 49, 30-36.                                                                       | 1.9 | 107       |
| 52 | Properties of scattered elastic waves in the lithosphere of kamchatka: Parameters and temporal variations. Tectonophysics, 1985, 112, 137-153.                                                          | 2.2 | 63        |
| 53 | A formula for the apparent attenuation of acoustic waves in randomly layered media. Geophysical<br>Journal International, 1983, 75, 541-544.                                                            | 2.4 | 86        |
| 54 | The earthquake spectral anomaly estimate by the MLH to mB relation and its possible application to earthquake prediction. Physics of the Earth and Planetary Interiors, 1979, 18, 326-329.              | 1.9 | 3         |

| #  | Article                                                                                     | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Long- and short-term earthquake prediction in Kamchatka. Tectonophysics, 1977, 37, 305-321. | 2.2 | 25        |
| 56 | Progress of earthquake prediction in Kamchatka. Tectonophysics, 1972, 14, 279-286.          | 2.2 | 21        |