## David A Pyke

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4587603/publications.pdf Version: 2024-02-01



ΠΛΥΙΟ Δ ΡΥΚΕ

| #  | Article                                                                                                                                                                                                                        | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Fuel reduction treatments reduce modeled fire intensity in the sagebrush steppe. Ecosphere, 2022, 13, .                                                                                                                        | 2.2  | 13        |
| 2  | Targeting Sagebrush (Artemisia Spp.) Restoration Following Wildfire with Greater Sage-Grouse<br>(Centrocercus Urophasianus) Nest Selection and Survival Models. Environmental Management, 2022,<br>70, 288-306.                | 2.7  | 4         |
| 3  | Sagebrush recovery patterns after fuel treatments mediated by disturbance type and plant functional group interactions. Ecosphere, 2021, 12, e03450.                                                                           | 2.2  | 9         |
| 4  | Hydroseeding tackifiers and dryland moss restoration potential. Restoration Ecology, 2020, 28, S127.                                                                                                                           | 2.9  | 12        |
| 5  | Passive restoration of vegetation and biological soil crusts following 80 years of exclusion from grazing across the Great Basin. Restoration Ecology, 2020, 28, S75.                                                          | 2.9  | 22        |
| 6  | Postfire growth of seeded and planted big sagebrush—strategic designs for restoring greater<br>sageâ€grouse nesting habitat. Restoration Ecology, 2020, 28, 1495-1504.                                                         | 2.9  | 23        |
| 7  | Biological soil crusts in ecological restoration: emerging research and perspectives. Restoration Ecology, 2020, 28, S3.                                                                                                       | 2.9  | 46        |
| 8  | Components and Predictors of Biological Soil Crusts Vary at the Regional vs. Plant Community Scales.<br>Frontiers in Ecology and Evolution, 2020, 7, .                                                                         | 2.2  | 10        |
| 9  | Transient population dynamics impede restoration and may promote ecosystem transformation after disturbance. Ecology Letters, 2019, 22, 1357-1366.                                                                             | 6.4  | 61        |
| 10 | Soil characteristics are associated with gradients of big sagebrush canopy structure after disturbance. Ecosphere, 2019, 10, e02780.                                                                                           | 2.2  | 19        |
| 11 | A strategy for defining the reference for land health and degradation assessments. Ecological Indicators, 2019, 97, 225-230.                                                                                                   | 6.3  | 20        |
| 12 | Context-dependent Effects of Livestock Grazing in Deserts of Western North America. , 2019, , 89-114.                                                                                                                          |      | 0         |
| 13 | Functional Group, Biomass, and Climate Change Effects on Ecological Drought in Semiarid<br>Grasslands. Journal of Geophysical Research G: Biogeosciences, 2018, 123, 1072-1085.                                                | 3.0  | 13        |
| 14 | Resiliency of biological soil crusts and vascular plants varies among morphogroups with disturbance intensity. Plant and Soil, 2018, 433, 271-287.                                                                             | 3.7  | 37        |
| 15 | Resilience and resistance in sagebrush ecosystems are associated with seasonal soil temperature and water availability. Ecosphere, 2018, 9, e02417.                                                                            | 2.2  | 43        |
| 16 | Adapting management to a changing world: Warm temperatures, dry soil, and interannual variability<br>limit restoration success of a dominant woody shrub in temperate drylands. Global Change Biology,<br>2018, 24, 4972-4982. | 9.5  | 78        |
| 17 | Fire and Grazing Influence Site Resistance to Bromus tectorum Through Their Effects on Shrub,<br>Bunchgrass and Biocrust Communities in the Great Basin (USA). Ecosystems, 2018, 21, 1416-1431.                                | 3.4  | 57        |
| 18 | Climate change reduces extent of temperate drylands and intensifies drought in deep soils. Nature<br>Communications, 2017, 8, 14196.                                                                                           | 12.8 | 282       |

| #  | Article                                                                                                                                                                                                                                                     | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Fungal and bacterial contributions to nitrogen cycling in cheatgrass-invaded and uninvaded native sagebrush soils of the western USA. Plant and Soil, 2017, 416, 271-281.                                                                                   | 3.7  | 34        |
| 20 | Patterns in Greater Sageâ€grouse population dynamics correspond with public grazing records at<br>broad scales. Ecological Applications, 2017, 27, 1096-1107.                                                                                               | 3.8  | 29        |
| 21 | Climate changeâ€induced vegetation shifts lead to more ecological droughts despite projected rainfall increases in many global temperate drylands. Global Change Biology, 2017, 23, 2743-2754.                                                              | 9.5  | 121       |
| 22 | Using Resilience and Resistance Concepts to Manage Persistent Threats to Sagebrush Ecosystems and<br>Greater Sage-grouse. Rangeland Ecology and Management, 2017, 70, 149-164.                                                                              | 2.3  | 92        |
| 23 | Monitoring Protocols: Options, Approaches, Implementation, Benefits. Springer Series on<br>Environmental Management, 2017, , 527-567.                                                                                                                       | 0.3  | 6         |
| 24 | Filling the interspace—restoring arid land mosses: source populations, organic matter, and overwintering govern success. Ecology and Evolution, 2016, 6, 7623-7632.                                                                                         | 1.9  | 43        |
| 25 | Land Uses, Fire, and Invasion: Exotic Annual Bromus and Human Dimensions. Springer Series on<br>Environmental Management, 2016, , 307-337.                                                                                                                  | 0.3  | 23        |
| 26 | Stressâ€gradient hypothesis explains susceptibility to <i>Bromus tectorum</i> invasion and community<br>stability in North America's semiâ€arid <i>Artemisia tridentata wyomingensis</i> ecosystems. Journal of<br>Vegetation Science, 2015, 26, 1212-1224. | 2.2  | 27        |
| 27 | Plant species' origin predicts dominance and response to nutrient enrichment and herbivores in global grasslands. Nature Communications, 2015, 6, 7710.                                                                                                     | 12.8 | 143       |
| 28 | A Synopsis of Short-Term Response to Alternative Restoration Treatments in Sagebrush-Steppe: The<br>SageSTEP Project. Rangeland Ecology and Management, 2014, 67, 584-598.                                                                                  | 2.3  | 19        |
| 29 | Longâ€ŧerm effects of seeding after wildfire on vegetation in Great Basin shrubland ecosystems.<br>Journal of Applied Ecology, 2014, 51, 1414-1424.                                                                                                         | 4.0  | 181       |
| 30 | Resilience to Stress and Disturbance, and Resistance to Bromus tectorum L. Invasion in Cold Desert<br>Shrublands of Western North America. Ecosystems, 2014, 17, 360-375.                                                                                   | 3.4  | 336       |
| 31 | Resilience and Resistance of Sagebrush Ecosystems: Implications for State and Transition Models and Management Treatments. Rangeland Ecology and Management, 2014, 67, 440-454.                                                                             | 2.3  | 195       |
| 32 | Monitoring of Livestock Grazing Effects on Bureau of Land Management Land. Rangeland Ecology and<br>Management, 2014, 67, 68-77.                                                                                                                            | 2.3  | 36        |
| 33 | Region-Wide Ecological Responses of Arid Wyoming Big Sagebrush Communities to Fuel Treatments.<br>Rangeland Ecology and Management, 2014, 67, 455-467.                                                                                                      | 2.3  | 55        |
| 34 | Soil Resources Influence Vegetation and Response to Fire and Fire-Surrogate Treatments in Sagebrush-Steppe Ecosystems. Rangeland Ecology and Management, 2014, 67, 506-521.                                                                                 | 2.3  | 32        |
| 35 | Herbivores and nutrients control grassland plant diversity via light limitation. Nature, 2014, 508, 517-520.                                                                                                                                                | 27.8 | 669       |
| 36 | Quantifying restoration effectiveness using multiâ€scale habitat models: implications for sageâ€grouse in<br>the Great Basin. Ecosphere, 2014, 5, 1-32.                                                                                                     | 2.2  | 96        |

| #  | Article                                                                                                                                                                                      | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Nitrogen limitation, 15N tracer retention, and growth response in intact and Bromus<br>tectorum-invaded Artemisia tridentata ssp. wyomingensis communities. Oecologia, 2013, 171, 1013-1023. | 2.0  | 6         |
| 38 | Predicting invasion in grassland ecosystems: is exotic dominance the real embarrassment of richness?.<br>Global Change Biology, 2013, 19, 3677-3687.                                         | 9.5  | 70        |
| 39 | Does Seeding After Wildfires in Rangelands Reduce Erosion or Invasive Species?. Restoration Ecology, 2013, 21, 415-421.                                                                      | 2.9  | 64        |
| 40 | Conditions favouring <i><scp>B</scp>romus tectorum</i> dominance of endangered sagebrush steppe<br>ecosystems. Journal of Applied Ecology, 2013, 50, 1039-1049.                              | 4.0  | 177       |
| 41 | Outplanting Wyoming Big Sagebrush Following Wildfire: Stock Performance and Economics.<br>Rangeland Ecology and Management, 2013, 66, 657-666.                                               | 2.3  | 28        |
| 42 | A holistic strategy for adaptive land management. Journal of Soils and Water Conservation, 2012, 67, 105A-113A.                                                                              | 1.6  | 26        |
| 43 | Burial increases seed longevity of two <i>Artemisia tridentata</i> (Asteraceae) subspecies. American<br>Journal of Botany, 2012, 99, 438-447.                                                | 1.7  | 64        |
| 44 | Abundance of introduced species at home predicts abundance away in herbaceous communities.<br>Ecology Letters, 2011, 14, 274-281.                                                            | 6.4  | 88        |
| 45 | Productivity Is a Poor Predictor of Plant Species Richness. Science, 2011, 333, 1750-1753.                                                                                                   | 12.6 | 463       |
| 46 | Effects of resource availability and propagule supply on native species recruitment in sagebrush ecosystems invaded by Bromus tectorum. Biological Invasions, 2011, 13, 513-526.             | 2.4  | 39        |
| 47 | Characteristics of Sagebrush Habitats and Limitations to Long-Term Conservation. , 2011, , 144-184.                                                                                          |      | 82        |
| 48 | Ecological Influence and Pathways of Land Use in Sagebrush. , 2011, , 202-251.                                                                                                               |      | 14        |
| 49 | Restoring and Rehabilitating Sagebrush Habitats. , 2011, , 530-548.                                                                                                                          |      | 19        |
| 50 | Yield Responses of Ruderal Plants to Sucrose in Invasiveâ€Đominated Sagebrush Steppe of the Northern<br>Great Basin. Restoration Ecology, 2010, 18, 304-312.                                 | 2.9  | 10        |
| 51 | Fire as a Restoration Tool: A Decision Framework for Predicting the Control or Enhancement of Plants Using Fire. Restoration Ecology, 2010, 18, 274-284.                                     | 2.9  | 120       |
| 52 | Learning Natural Resource Assessment Protocols: Elements for Success and Lessons From an<br>International Workshop in Inner Mongolia, China. Rangelands, 2010, 32, .                         | 1.9  | 0         |
| 53 | Assessing Transportation Infrastructure Impacts on Rangelands: Test of a Standard Rangeland<br>Assessment Protocol. Rangeland Ecology and Management, 2010, 63, 524-536.                     | 2.3  | 24        |
| 54 | Learning Natural Resource Assessment Protocols: Elements for Success and Lessons From an<br>International Workshop in Inner Mongolia, China. Rangelands, 2010, 32, 2-9.                      | 1.9  | 2         |

| #  | Article                                                                                                                                                                              | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | National ecosystem assessments supported by scientific and local knowledge. Frontiers in Ecology and the Environment, 2010, 8, 403-408.                                              | 4.0 | 131       |
| 56 | A Spatial Model to Prioritize Sagebrush Landscapes in the Intermountain West (U.S.A.) for Restoration.<br>Restoration Ecology, 2009, 17, 652-659.                                    | 2.9 | 51        |
| 57 | Western juniper and ponderosa pine ecotonal climate–growth relationships across landscape<br>gradients in southern Oregon. Canadian Journal of Forest Research, 2008, 38, 3021-3032. | 1.7 | 25        |
| 58 | Defoliation Effects On Bromus Tectorum Seed Production: Implications For Grazing. Rangeland Ecology and Management, 2008, 61, 116-123.                                               | 2.3 | 41        |
| 59 | Is Rangeland Health Relevant to Mongolia?. Rangelands, 2008, 30, 25-29.                                                                                                              | 1.9 | 6         |
| 60 | Biotic soil crusts in relation to topography, cheatgrass and fire in the Columbia Basin, Washington.<br>Bryologist, 2007, 110, 706-722.                                              | 0.6 | 56        |
| 61 | Multiscale responses of soil stability and invasive plants to removal of non-native grazers from an arid conservation reserve. Diversity and Distributions, 2006, 12, 258-268.       | 4.1 | 31        |
| 62 | Establishing Native Grasses in a Big Sagebrush-Dominated Site: An Intermediate Restoration Step.<br>Restoration Ecology, 2005, 13, 292-301.                                          | 2.9 | 49        |
| 63 | Available nitrogen: A time-based study of manipulated resource islands. Plant and Soil, 2005, 270, 123-133.                                                                          | 3.7 | 40        |
| 64 | Restoring Forbs for Sage Grouse Habitat: Fire, Microsites, and Establishment Methods. Restoration Ecology, 2003, 11, 370-377.                                                        | 2.9 | 25        |
| 65 | THE EFFECT OF STOCHASTIC TECHNIQUE ON ESTIMATES OF POPULATION VIABILITY FROM TRANSITION MATRIX MODELS. Ecology, 2003, 84, 1464-1476.                                                 | 3.2 | 61        |
| 66 | Rangeland Health Attributes and Indicators for Qualitative Assessment. Journal of Range Management,<br>2002, 55, 584.                                                                | 0.3 | 199       |
| 67 | Ramet spacing of Elymus lanceolatus (thickspike wheatgrass) in response to neighbour density.<br>Canadian Journal of Botany, 2001, 79, 1122-1126.                                    | 1.1 | 11        |
| 68 | Demographic and growth responses of a guerrilla and a phalanx perennial grass in competitive mixtures. Journal of Ecology, 1998, 86, 854-865.                                        | 4.0 | 111       |
| 69 | EFFECTS OF NUTRIENT PATCHES AND ROOT SYSTEMS ON THE CLONAL PLASTICITY OF A RHIZOMATOUS GRASS. Ecology, 1998, 79, 2267-2280.                                                          | 3.2 | 39        |
| 70 | Clonal Foraging in Perennial Wheatgrasses: A Strategy for Exploiting Patchy Soil Nutrients. Journal of Ecology, 1997, 85, 601.                                                       | 4.0 | 28        |
| 71 | Perception of neighbouring plants by rhizomes and roots: morphological manifestations of a clonal plant. Canadian Journal of Botany, 1997, 75, 2146-2157.                            | 1.1 | 36        |
| 72 | Crested Wheatgrass-Cheatgrass Seedling Competition in a Mixed-Density Design. Journal of Range<br>Management, 1996, 49, 432.                                                         | 0.3 | 30        |

| #  | Article                                                                                                                                                                                           | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Morphological Plasticity Following Species-Specific Recognition and Competition in Two Perennial<br>Grasses. American Journal of Botany, 1996, 83, 919.                                           | 1.7 | 29        |
| 74 | Morphological plasticity following speciesâ€ <b>s</b> pecific recognition and competition in two perennial grasses. American Journal of Botany, 1996, 83, 919-931.                                | 1.7 | 41        |
| 75 | Plant-Plant Interactions Affecting Plant Establishment and Persistence on Revegetated Rangeland.<br>Journal of Range Management, 1991, 44, 550.                                                   | 0.3 | 81        |
| 76 | Plant-Animal Interactions Affecting Plant Establishment and Persistence on Revegetated Rangeland.<br>Journal of Range Management, 1991, 44, 558.                                                  | 0.3 | 62        |
| 77 | Impact of early root competition on fitness components of four semiarid species. Oecologia, 1990, 85, 159-166.                                                                                    | 2.0 | 69        |
| 78 | Comparative demography of co-occurring introduced and native tussock grasses: persistence and potential expansion. Oecologia, 1990, 82, 537-543.                                                  | 2.0 | 108       |
| 79 | Limited Resources and Reproductive Constraints in Annuals. Functional Ecology, 1989, 3, 221.                                                                                                      | 3.6 | 17        |
| 80 | Comparison of skewness coefficient, coefficient of variation, and Gini coefficient as inequality measures within populations. Oecologia, 1989, 78, 394-400.                                       | 2.0 | 163       |
| 81 | Demographic Responses of Bromus Tectorum and Seedlings of Agropyron Spicatum to Grazing by<br>Small Mammals: The Influence of Grazing Frequency and Plant Age. Journal of Ecology, 1987, 75, 825. | 4.0 | 29        |
| 82 | Statistical Analysis of Survival and Removal Rate Experiments. Ecology, 1986, 67, 240-245.                                                                                                        | 3.2 | 364       |
| 83 | Demographic Responses of Bromus Tectorum and Seedlings of Agropyron Spicatum to Grazing by<br>Small Mammals: Occurrence and Severity of Grazing. Journal of Ecology, 1986, 74, 739.               | 4.0 | 40        |
| 84 | The Demography of Bromus Tectorum: The Role of Microclimate, Grazing and Disease. Journal of Ecology, 1984, 72, 731.                                                                              | 4.0 | 109       |
| 85 | Initial Effects of Volcanic Ash from Mount St. Helens on Peromyscus maniculatus and Microtus montanus. Journal of Mammalogy, 1984, 65, 678-680.                                                   | 1.3 | 4         |
| 86 | The Demography of Bromus Tectorum: Variation in Time and Space. Journal of Ecology, 1983, 71, 69.                                                                                                 | 4.0 | 251       |
| 87 | Relationships between Overstory Structure and Understory Production in the Grand Fir/Myrtle<br>Boxwood Habitat Type of Northcentral Idaho. Journal of Range Management, 1982, 35, 769.            | 0.3 | 18        |
| 88 | Mapping Individual Plants with a Field-Portable Digitizer. Ecology, 1979, 60, 459-461.                                                                                                            | 3.2 | 4         |