Eric Van Otterloo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/458713/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	AP-2 \hat{l} ± and AP-2 \hat{l}^2 cooperatively function in the craniofacial surface ectoderm to regulate chromatin and gene expression dynamics during facial development. ELife, 2022, 11, .	6.0	17
2	Discerning a Potential Link between MEMO1's Role in Vascular, Bone, and Craniofacial Development. FASEB Journal, 2022, 36, .	0.5	0
3	TFAP2 paralogs facilitate chromatin access for MITF at pigmentation and cell proliferation genes. PLoS Genetics, 2022, 18, e1010207.	3.5	13
4	Anomalous incisor morphology indicates tissue-specific roles for Tfap2a and Tfap2b in tooth development. Developmental Biology, 2021, 472, 67-74.	2.0	9
5	The Skull's Girder: A Brief Review of the Cranial Base. Journal of Developmental Biology, 2021, 9, 3.	1.7	12
6	Finding MEMO—Emerging Evidence for MEMO1′s Function in Development and Disease. Genes, 2020, 11, 1316.	2.4	13
7	AP-2α and AP-2β cooperatively orchestrate homeobox gene expression during branchial arch patterning. Development (Cambridge), 2018, 145, .	2.5	35
8	Differential 3' processing of specific transcripts expands regulatory and protein diversity across neuronal cell types. ELife, 2018, 7, .	6.0	30
9	Beyond <scp>MITF</scp> : Multiple transcription factors directly regulate the cellular phenotype in melanocytes and melanoma. Pigment Cell and Melanoma Research, 2017, 30, 454-466.	3.3	87
10	TFAP2 paralogs regulate melanocyte differentiation in parallel with MITF. PLoS Genetics, 2017, 13, e1006636.	3.5	78
11	MEMO1 drives cranial endochondral ossification and palatogenesis. Developmental Biology, 2016, 415, 278-295.	2.0	16
12	The old and new face of craniofacial research: How animal models inform human craniofacial genetic and clinical data. Developmental Biology, 2016, 415, 171-187.	2.0	61
13	Transcription factor MITF and remodeller BRG1 define chromatin organisation at regulatory elements in melanoma cells. ELife, 2015, 4, .	6.0	147
14	New Functional Signatures for Understanding Melanoma Biology from Tumor Cell Lineage-Specific Analysis. Cell Reports, 2015, 13, 840-853.	6.4	76
15	A Polymorphism in IRF4 Affects Human Pigmentation through a Tyrosinase-Dependent MITF/TFAP2A Pathway. Cell, 2013, 155, 1022-1033.	28.9	184
16	Gene regulatory evolution and the origin of macroevolutionary novelties: Insights from the neural crest. Genesis, 2013, 51, 457-470.	1.6	9
17	Novel Tfap2-mediated control of <i>soxE</i> expression facilitated the evolutionary emergence of the neural crest. Development (Cambridge), 2012, 139, 720-730.	2.5	51
18	Differentiation of Zebrafish Melanophores Depends on Transcription Factors AP2 Alpha and AP2 Epsilon. PLoS Genetics, 2010, 6, e1001122.	3.5	45

#	Article	IF	CITATIONS
19	Maternal Interferon Regulatory Factor 6 is required for the differentiation of primary superficial epithelia in Danio and Xenopus embryos. Developmental Biology, 2009, 325, 249-262.	2.0	64