
Trygve Skjold

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4586964/publications.pdf Version: 2024-02-01

TRYCUE SKIDID

#	Article	IF	CITATIONS
1	Simulating vented hydrogen deflagrations: Improved modelling in the CFD tool FLACS-hydrogen. International Journal of Hydrogen Energy, 2021, 46, 12464-12473.	7.1	18
2	Assessing the influence of real releases on explosions: Selected results from large-scale experiments. Journal of Loss Prevention in the Process Industries, 2021, 72, 104561.	3.3	3
3	Computational fluid dynamics simulations of hydrogen releases and vented deflagrations in large enclosures. Journal of Loss Prevention in the Process Industries, 2020, 63, 103999.	3.3	12
4	Blind-prediction: Estimating the consequences of vented hydrogen deflagrations for inhomogeneous mixtures in 20-foot ISO containers. Journal of Loss Prevention in the Process Industries, 2019, 61, 220-236.	3.3	17
5	A brief review on the effect of particle size on the laminar burning velocity of flammable dust: Application in a CFD tool for industrial applications. Journal of Loss Prevention in the Process Industries, 2019, 62, 103929.	3.3	6
6	Structural response for vented hydrogen deflagrations: Coupling CFD and FE tools. International Journal of Hydrogen Energy, 2019, 44, 8893-8903.	7.1	14
7	Blind-prediction: Estimating the consequences of vented hydrogen deflagrations for homogeneous mixtures in 20-foot ISO containers. International Journal of Hydrogen Energy, 2019, 44, 8997-9008.	7.1	15
8	Vented hydrogen deflagrations in containers: Effect of congestion for homogeneous and inhomogeneous mixtures. International Journal of Hydrogen Energy, 2019, 44, 8819-8832.	7.1	34
9	Consequence models for vented hydrogen deflagrations: CFD vs. engineering models. International Journal of Hydrogen Energy, 2019, 44, 8699-8710.	7.1	20
10	Dust explosion modeling: Status and prospects. Particulate Science and Technology, 2018, 36, 489-500.	2.1	7
11	Fires and explosions. Progress in Energy and Combustion Science, 2018, 64, 2-3.	31.2	20
12	Construction of a 36 L dust explosion apparatus and turbulence flow field comparison with a standard 20 L dust explosion vessel. Journal of Loss Prevention in the Process Industries, 2018, 55, 113-123.	3.3	17
13	3D risk management for hydrogen installations. International Journal of Hydrogen Energy, 2017, 42, 7721-7730.	7.1	37
14	Evaluation of multi-phase atmospheric dispersion models for application to Carbon Capture and Storage. Journal of Loss Prevention in the Process Industries, 2014, 32, 286-298.	3.3	35
15	An integrated, multi-scale modelling approach for the simulation of multiphase dispersion from accidental CO2 pipeline releases in realistic terrain. International Journal of Greenhouse Gas Control, 2014, 27, 221-238.	4.6	40
16	Experimental and numerical investigation of constant volume dust and gas explosions in a 3.6-mÂflame acceleration tube. Journal of Loss Prevention in the Process Industries, 2014, 30, 164-176.	3.3	21
17	On the Application of the Levenberg–Marquardt Method in Conjunction with an Explicit Runge–Kutta and an Implicit Rosenbrock Method to Assess Burning Velocities from Confined Deflagrations. Flow, Turbulence and Combustion, 2013, 91, 281-317.	2.6	16
18	A constant pressure dust explosion experiment. Journal of Loss Prevention in the Process Industries, 2013, 26, 562-570.	3.3	17

TRYGVE SKJOLD

#	Article	IF	CITATIONS
19	Explosions of carbon black and propane hybrid mixtures. Journal of Loss Prevention in the Process Industries, 2013, 26, 45-51.	3.3	22
20	Validation of the DESC Code in Simulating the Effect of Vent Ducts on Dust Explosions. Industrial & Engineering Chemistry Research, 2013, 52, 6057-6067.	3.7	15
21	Investigation of an explosion in a gasoline purification plant. Process Safety Progress, 2013, 32, 268-276.	1.0	3
22	Review of the DESC project. Journal of Loss Prevention in the Process Industries, 2007, 20, 291-302.	3.3	55
23	Determination of the maximum effective burning velocity of dust–air mixtures in constant volume combustion. Journal of Loss Prevention in the Process Industries, 2007, 20, 462-469.	3.3	24
24	Simulation of dust explosions in complex geometries with experimental input from standardized tests. Journal of Loss Prevention in the Process Industries, 2006, 19, 210-217.	3.3	39
25	Simulating Dust Explosions with the First Version of DESC. Chemical Engineering Research and Design, 2005, 83, 151-160.	5.6	49