Helene Javot

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4586868/publications.pdf

Version: 2024-02-01

24 4,559 18 23
papers citations h-index g-index

26 26 26 5149 all docs docs citations times ranked citing authors

#	Article	lF	CITATIONS
1	A Medicago truncatula phosphate transporter indispensable for the arbuscular mycorrhizal symbiosis. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 1720-1725.	7.1	634
2	Cytosolic pH regulates root water transport during anoxic stress through gating of aquaporins. Nature, 2003, 425, 393-397.	27.8	601
3	The Role of Aquaporins in Root Water Uptake. Annals of Botany, 2002, 90, 301-313.	2.9	531
4	Evidence for a SAL1-PAP Chloroplast Retrograde Pathway That Functions in Drought and High Light Signaling in <i>Arabidopsis</i> À Â Â. Plant Cell, 2011, 23, 3992-4012.	6.6	473
5	Phosphate import in plants: focus on the PHT1 transporters. Frontiers in Plant Science, 2011, 2, 83.	3.6	427
6	Phosphate in the arbuscular mycorrhizal symbiosis: transport properties and regulatory roles. Plant, Cell and Environment, 2007, 30, 310-322.	5.7	339
7	Role of a Single Aquaporin Isoform in Root Water Uptake. Plant Cell, 2003, 15, 509-522.	6.6	331
8	Medicago truncatula and Glomus intraradices gene expression in cortical cells harboring arbuscules in the arbuscular mycorrhizal symbiosis. BMC Plant Biology, 2009, 9, 10.	3 . 6	277
9	Low phosphate activates STOP1-ALMT1 to rapidly inhibit root cell elongation. Nature Communications, 2017, 8, 15300.	12.8	268
10	Molecular physiology of aquaporins in plants. International Review of Cytology, 2002, 215, 105-148.	6.2	153
11	<i>Medicago truncatula mtpt4</i> mutants reveal a role for nitrogen in the regulation of arbuscule degeneration in arbuscular mycorrhizal symbiosis. Plant Journal, 2011, 68, 954-965.	5.7	103
12	A novel role for the root cap in phosphate uptake and homeostasis. ELife, 2016, 5, e14577.	6.0	79
13	A Novel fry1 Allele Reveals the Existence of a Mutant Phenotype Unrelated to 5′->3′ Exoribonuclease (XRN) Activities in Arabidopsis thaliana Roots. PLoS ONE, 2011, 6, e16724.	2.5	64
14	The high diversity of aquaporins reveals novel facets of plant membrane functions. Current Opinion in Plant Biology, 2000, 3, 476-481.	7.1	55
15	Saturating Light Induces Sustained Accumulation of Oil in Plastidal Lipid Droplets in <i>Chlamydomonas reinhardtii</i>). Plant Physiology, 2016, 171, 2406-2417.	4.8	54
16	Performance and Limitations of Phosphate Quantification: Guidelines for Plant Biologists. Plant and Cell Physiology, 2016, 57, 690-706.	3.1	48
17	Live single-cell transcriptional dynamics via RNA labelling during the phosphate response in plants. Nature Plants, 2021, 7, 1050-1064.	9.3	27
18	The Phosphate Fast-Responsive Genes <i>PECP1</i> and <i>PPsPase1</i> Affect Phosphocholine and Phosphoethanolamine Content. Plant Physiology, 2018, 176, 2943-2962.	4.8	22

#	Article	IF	CITATION
19	Identification of Phosphatin, a Drug Alleviating Phosphate Starvation Responses in Arabidopsis Â. Plant Physiology, 2014, 166, 1479-1491.	4.8	20
20	Metal crossroads in plants: modulation of nutrient acquisition and root development by essential trace metals. Journal of Experimental Botany, 2022, 73, 1751-1765.	4.8	15
21	Synthesis and Characterization of Cellâ€Permeable Caged Phosphates that Can Be Photolyzed by Visible Light or 800 nm Twoâ€Photon Photolysis. ChemBioChem, 2013, 14, 2277-2283.	2.6	14
22	In situ visualization of carbonylation and its co-localization with proteins, lipids, DNA and RNA in Caenorhabditis elegans. Free Radical Biology and Medicine, 2016, 101, 465-474.	2.9	13
23	SeedUSoon: A New Software Program to Improve Seed Stock Management and Plant Line Exchanges between Research Laboratories. Frontiers in Plant Science, 2017, 8, 13.	3.6	11
24	Affinity Purification of GO-Matryoshka Biosensors from E. coli for Quantitative Ratiometric Fluorescence Analyses. Bio-protocol, 2020, 10, e3773.	0.4	0