
Xueliang Shi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4586849/publications.pdf Version: 2024-02-01

XUELIANC SHI

#	Article	IF	CITATIONS
1	Amplified circularly polarized luminescence promoted by hierarchical self-assembly involving Pt···Pt interactions. Science China Materials, 2022, 65, 469-476.	6.3	12
2	Rotaxane-branched radical dendrimers with TEMPO termini. Chemical Communications, 2022, 58, 2006-2009.	4.1	4
3	The synergistic effects of central core size and end group engineering on performance of narrow bandgap nonfullerene acceptors. Chemical Engineering Journal, 2022, 435, 135020.	12.7	14
4	Extended phenothiazines: synthesis, photophysical and redox properties, and efficient photocatalytic oxidative coupling of amines. Chemical Science, 2022, 13, 5252-5260.	7.4	7
5	Effective Design Strategy of Small Bipolar Molecules through Fused Conjugation toward 2.5 V Based Redox Flow Batteries. ACS Energy Letters, 2022, 7, 1274-1283.	17.4	18
6	The Molecular Ordering and Doubleâ€Channel Carrier Generation of Nonfullerene Photovoltaics within Multiâ€Lengthâ€Scale Morphology. Advanced Materials, 2022, 34, e2108317.	21.0	43
7	Dilution effect for highly efficient multiple-component organic solar cells. Nature Nanotechnology, 2022, 17, 53-60.	31.5	99
8	Redox Properties of <i>N,N′</i> -Disubstituted Dihydrophenazine and Dihydrodibenzo[<i>a,c</i>]phenazine: The First Isolation of Their Crystalline Radical Cations and Dications. Crystal Growth and Design, 2022, 22, 3587-3593.	3.0	8
9	Recent progress on <scp>allâ€small</scp> molecule organic solar cells using <scp>smallâ€molecule</scp> nonfullerene acceptors. InformaÄnÃ-Materiály, 2021, 3, 175-200.	17.3	113
10	Facile construction of well-defined radical metallacycles through coordination-driven self-assembly. Materials Chemistry Frontiers, 2021, 5, 1863-1871.	5.9	17
11	Aryl carbazole-based macrocycles: synthesis, their remarkably stable radical cations and host–guest complexation with fullerenes. Organic Chemistry Frontiers, 2021, 8, 4678-4684.	4.5	6
12	Orthogonal Self-Assembly of a Two-Step Fluorescence-Resonance Energy Transfer System with Improved Photosensitization Efficiency and Photooxidation Activity. Journal of the American Chemical Society, 2021, 143, 399-408.	13.7	104
13	TEMPO Radical-Functionalized Supramolecular Coordination Complexes with Controllable Spin–Spin Interactions. Journal of the American Chemical Society, 2021, 143, 433-441.	13.7	26
14	Post‣ynthetic Modification of Metalâ€Organic Frameworks Bearing Phenazine Radical Cations for azaâ€Dielsâ€Alder Reactions. Chemistry - an Asian Journal, 2021, 16, 3985-3992.	3.3	9
15	Highly efficient synthesis of non-planar macrocycles possessing intriguing self-assembling behaviors and ethene/ethyne capture properties. Nature Communications, 2020, 11, 5806.	12.8	22
16	Approaching 16% Efficiency in All-Small-Molecule Organic Solar Cells Based on Ternary Strategy with a Highly Crystalline Acceptor. Joule, 2020, 4, 2223-2236.	24.0	142
17	Revealing the Interfacial Photoreduction of MoO ₃ with P3HT from the Molecular Weight-Dependent "Burn-In―Degradation of P3HT:PC ₆₁ BM Solar Cells. ACS Applied Energy Materials, 2020, 3, 9714-9723.	5.1	13
18	Controllable synthesis of ultrasmall Pd nanocatalysts templated by supramolecular coordination cages for highly efficient reductive dehalogenation. Journal of Materials Chemistry A, 2020, 8, 12097-12105.	10.3	16

XUELIANG SHI

#	Article	IF	CITATIONS
19	Efficient self-assembly of heterometallic triangular necklace with strong antibacterial activity. Nature Communications, 2020, 11, 3178.	12.8	43
20	Biomimetic Electrodes for Flexible Organic Solar Cells with Efficiencies over 16%. Advanced Optical Materials, 2020, 8, 2000669.	7.3	47
21	The role of dipole moment in two fused-ring electron acceptor and one polymer donor based ternary organic solar cells. Materials Chemistry Frontiers, 2020, 4, 1507-1518.	5.9	22
22	Highly Efficient Semitransparent Solar Cells with Selective Absorption and Tandem Architecture. Advanced Materials, 2019, 31, e1901683.	21.0	89
23	Radical-Induced Hierarchical Self-Assembly Involving Supramolecular Coordination Complexes in Both Solution and Solid States. Journal of the American Chemical Society, 2019, 141, 16014-16023.	13.7	62
24	Fused selenophene-thieno[3,2- <i>b</i>]thiophene–selenophene (ST)-based narrow-bandgap electron acceptor for efficient organic solar cells with small voltage loss. Chemical Communications, 2019, 55, 8258-8261.	4.1	42
25	Tailoring the Functionality of Organic Spacer Cations for Efficient and Stable Quasiâ€⊋D Perovskite Solar Cells. Advanced Functional Materials, 2019, 29, 1900221.	14.9	144
26	Over 12% Efficiency Nonfullerene Allâ€6mallâ€Molecule Organic Solar Cells with Sequentially Evolved Multilength Scale Morphologies. Advanced Materials, 2019, 31, e1807842.	21.0	272
27	Dithienopicenocarbazole-Based Acceptors for Efficient Organic Solar Cells with Optoelectronic Response Over 1000 nm and an Extremely Low Energy Loss. Journal of the American Chemical Society, 2018, 140, 2054-2057.	13.7	369
28	Terthieno[3,2â€ <i>b</i>]Thiophene (6T) Based Low Bandgap Fusedâ€Ring Electron Acceptor for Highly Efficient Solar Cells with a High Shortâ€Circuit Current Density and Low Openâ€Circuit Voltage Loss. Advanced Energy Materials, 2018, 8, 1702831.	19.5	93
29	Tackling Energy Loss for Highâ€Efficiency Organic Solar Cells with Integrated Multiple Strategies. Advanced Materials, 2018, 30, e1706816.	21.0	92
30	Unexpectedly Slow Yet Efficient Picosecond to Nanosecond Photoinduced Hole-Transfer Occurs in a Polymer/Nonfullerene Acceptor Organic Photovoltaic Blend. ACS Energy Letters, 2018, 3, 2396-2403.	17.4	62
31	Diâ€Spiroâ€Based Holeâ€Transporting Materials for Highly Efficient Perovskite Solar Cells. Advanced Energy Materials, 2018, 8, 1800809.	19.5	79
32	Mapping Nonfullerene Acceptors with a Novel Wide Bandgap Polymer for High Performance Polymer Solar Cells. Advanced Energy Materials, 2018, 8, 1801214.	19.5	47
33	An Electron Acceptor with Broad Visible–NIR Absorption and Unique Solid State Packing for As ast High Performance Binary Organic Solar Cells. Advanced Functional Materials, 2018, 28, 1802324.	14.9	116
34	Highly Efficient Organic Solar Cells Based on S,N-Heteroacene Non-Fullerene Acceptors. Chemistry of Materials, 2018, 30, 5429-5434.	6.7	194
35	Highâ€Performance Nearâ€IR Photodetector Using Lowâ€Bandgap MA _{0.5} FA _{0.5} Pb _{0.5} Sn _{0.5} I ₃ Perovskite. Advanced Functional Materials, 2017, 27, 1701053.	14.9	103
36	Nonâ€classical Sâ€Heteroacenes with <i>o</i> â€Quinoidal Conjugation and Openâ€Shell Diradical Character. Chemistry - A European Journal, 2017, 23, 8525-8531.	3.3	15

XUELIANG SHI

#	Article	IF	CITATIONS
37	Design of a Highly Crystalline Low-Band Gap Fused-Ring Electron Acceptor for High-Efficiency Solar Cells with Low Energy Loss. Chemistry of Materials, 2017, 29, 8369-8376.	6.7	180
38	Highâ€Efficiency Nonfullerene Organic Solar Cells with a Parallel Tandem Configuration. Advanced Materials, 2017, 29, 1702547.	21.0	68
39	Heterocyclic Quinodimethanes. Topics in Current Chemistry, 2017, 375, 68.	5.8	26
40	Different Strategies for the Stabilization of Acenes and Acene Analogues. Chemical Record, 2016, 16, 1690-1700.	5.8	42
41	Benzo[4,5]cyclohepta[1,2-b]fluorene: an isomeric motif for pentacene containing linearly fused five-, six- and seven-membered rings. Chemical Science, 2016, 7, 6176-6181.	7.4	45
42	Benzo-thia-fused [n]thienoacenequinodimethanes with small to moderate diradical characters: the role of pro-aromaticity versus anti-aromaticity. Chemical Science, 2016, 7, 3036-3046.	7.4	38
43	Toward Tetraradicaloid: The Effect of Fusion Mode on Radical Character and Chemical Reactivity. Journal of the American Chemical Society, 2016, 138, 1065-1077.	13.7	103
44	Dipolar Quinoidal Acene Analogues as Stable Isoelectronic Structures of Pentacene and Nonacene. Angewandte Chemie - International Edition, 2015, 54, 14412-14416.	13.8	36
45	Pro-aromatic bisphenaleno-thieno[3,2-b]thiophene versus anti-aromatic bisindeno-thieno[3,2-b]thiophene: different ground-state properties and applications in field-effect transistors. Chemical Communications, 2015, 51, 13178-13180.	4.1	21
46	Antiaromatic bisindeno-[n]thienoacenes with small singlet biradical characters: syntheses, structures and chain length dependent physical properties. Chemical Science, 2014, 5, 4490-4503.	7.4	62
47	Solution-processable n-type and ambipolar semiconductors based on a fused	4.1	25