Yutaka Ohno

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4586807/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Flexible high-performance carbon nanotube integrated circuits. Nature Nanotechnology, 2011, 6, 156-161.	31.5	652
2	Mouldable all-carbon integrated circuits. Nature Communications, 2013, 4, 2302.	12.8	141
3	Considerably improved photovoltaic performance of carbon nanotube-based solar cells using metal oxide layers. Nature Communications, 2015, 6, 6305.	12.8	135
4	Length-sorted semiconducting carbon nanotubes for high-mobility thin film transistors. Nano Research, 2011, 4, 963-970.	10.4	128
5	Effects of surface passivation on breakdown of AlGaN/GaN high-electron-mobility transistors. Applied Physics Letters, 2004, 84, 2184-2186.	3.3	124
6	Chirality-dependent environmental effects in photoluminescence of single-walled carbon nanotubes. Physical Review B, 2006, 73, .	3.2	111
7	Spatially Resolved Transport Properties of Pristine and Doped Single-Walled Carbon Nanotube Networks. Journal of Physical Chemistry C, 2013, 117, 13324-13330.	3.1	86
8	Excitonic transition energies in single-walled carbon nanotubes: Dependence on environmental dielectric constant. Physica Status Solidi (B): Basic Research, 2007, 244, 4002-4005.	1.5	84
9	One-Step Sub-10 μm Patterning of Carbon-Nanotube Thin Films for Transparent Conductor Applications. ACS Nano, 2014, 8, 3285-3293.	14.6	76
10	High-output, transparent, stretchable triboelectric nanogenerator based on carbon nanotube thin film toward wearable energy harvesters. Nano Energy, 2020, 67, 104297.	16.0	64
11	Highly individual SWCNTs for high performance thin film electronics. Carbon, 2016, 103, 228-234.	10.3	63
12	Effect of carbon nanotube network morphology on thin film transistor performance. Nano Research, 2012, 5, 307-319.	10.4	59
13	Highâ€Performance Thinâ€Film Transistors with DNAâ€Assisted Solution Processing of Isolated Singleâ€Walled Carbon Nanotubes. Advanced Materials, 2010, 22, 2698-2701.	21.0	54
14	Fabrication of Single-Walled Carbon Nanotube/Si Heterojunction Solar Cells with High Photovoltaic Performance. ACS Photonics, 2014, 1, 360-364.	6.6	42
15	Dry and Direct Deposition of Aerosol-Synthesized Single-Walled Carbon Nanotubes by Thermophoresis. ACS Applied Materials & Interfaces, 2017, 9, 20738-20747.	8.0	42
16	A study of preferential growth of carbon nanotubes with semiconducting behavior grown by plasma-enhanced chemical vapor deposition. Journal of Applied Physics, 2009, 106, 073705.	2.5	27
17	Thin-Film Transistors with Length-Sorted DNA-Wrapped Single-Wall Carbon Nanotubes. Journal of Physical Chemistry C, 2011, 115, 270-273.	3.1	25
18	Overcoming the quality–quantity tradeoff in dispersion and printing of carbon nanotubes by a repetitive dispersion–extraction process. Carbon, 2015, 91, 20-29.	10.3	25

Υυτακά Οηνο

#	Article	IF	CITATIONS
19	Enhancement of the electron transfer rate in carbon nanotube flexible electrochemical sensors by surface functionalization. Electrochimica Acta, 2019, 295, 157-163.	5.2	21
20	Surface potential measurements of AlGaNâ^•GaN high-electron-mobility transistors by Kelvin probe force microscopy. Applied Physics Letters, 2004, 85, 6028-6029.	3.3	19
21	Carbon Nanotube Thin Films for High-Performance Flexible Electronics Applications. Topics in Current Chemistry, 2019, 377, 3.	5.8	19
22	Study on off-state breakdown in AlGaN/GaN HEMTs. Physica Status Solidi C: Current Topics in Solid State Physics, 2003, 0, 2335-2338.	0.8	18
23	Origins of the variability of the electrical characteristics of solution-processed carbon nanotube thin-film transistors and integrated circuits. Nanoscale Advances, 2019, 1, 636-642.	4.6	17
24	Highly Uniform, Flexible Microelectrodes Based on the Clean Single-Walled Carbon Nanotube Thin Film with High Electrochemical Activity. ACS Applied Materials & Interfaces, 2019, 11, 6389-6395.	8.0	13
25	Detection of Digitally Phase-Modulated Signals Utilizing Mechanical Vibration of CNT Cantilever. IEEE Nanotechnology Magazine, 2018, 17, 84-92.	2.0	12
26	Toward the Limits of Uniformity of Mixed Metallicity SWCNT TFT Arrays with Spark-Synthesized and Surface-Density-Controlled Nanotube Networks. ACS Applied Materials & Interfaces, 2015, 7, 28134-28141.	8.0	11
27	Electrical properties of the graphitic carbon contacts on carbon nanotube field effect transistors. Applied Physics Letters, 2012, 101, .	3.3	10
28	Fabrication of highâ€mobility <i>n</i> â€ŧype carbon nanotube thinâ€film transistors on plastic film. Physica Status Solidi C: Current Topics in Solid State Physics, 2013, 10, 1612-1615.	0.8	9
29	Angular Sensitivity of VHF-Band CNT Antenna. IEEE Nanotechnology Magazine, 2015, 14, 1112-1116.	2.0	9
30	Lowâ€Voltage Operable and Strainâ€Insensitive Stretchable Allâ€Carbon Nanotube Integrated Circuits with Local Strain Suppression Layer. Advanced Electronic Materials, 2021, 7, .	5.1	9
31	Low-voltage carbon nanotube complementary electronics using chemical doping to tune the threshold voltage. Applied Physics Express, 2021, 14, 045002.	2.4	8
32	Simple and highly efficient intermittent operation circuit for triboelectric nanogenerator toward wearable electronic applications. Applied Physics Express, 2021, 14, 057001.	2.4	8
33	Printed, short-channel, top-gate carbon nanotube thin-film transistors on flexible plastic film. Applied Physics Express, 2015, 8, 045102.	2.4	7
34	Electrical property measurement of two-dimensional hole-gas layer on hydrogen-terminated diamond surface in vacuum-gap-gate structure. Applied Physics Letters, 2019, 114, .	3.3	6
35	Noise Modeling in Field Emission and Evaluation of the Nano-Receiver in Terms of Temperature. IEEE Access, 2019, 7, 57820-57828.	4.2	6
36	POTENTIAL PROFILE MEASUREMENT OF CARBON NANOTUBE FETs BASED ON THE ELECTROSTATIC FORCE DETECTION. Nano, 2008, 03, 51-54.	1.0	5

Υυτακά Οηνο

#	Article	IF	CITATIONS
37	Dependence of enhancement factor on electrode size for field emission current from carbon nanotube on silicon wafer. Nanotechnology, 2019, 30, 425201.	2.6	5
38	Key factors for ultra-high on/off ratio thin-film transistors using as-grown carbon nanotube networks. RSC Advances, 2022, 12, 16291-16295.	3.6	5
39	Fabrication of Carbon Nanotube Thin Films for Flexible Transistors by Using a Crossâ€Linked Amine Polymer. Chemistry - A European Journal, 2020, 26, 6118-6121.	3.3	4
40	Cross-linking gelation of isomaltodextrin for the chromatographic separation of semiconducting carbon nanotubes. Applied Physics Express, 2021, 14, 017001.	2.4	4
41	Carbon Nanotube-Based Nanomechanical Receiver for Digital Data Transfer. ACS Applied Nano Materials, 2021, 4, 13041-13047.	5.0	4
42	Effects of the HEMT parameters on the operation frequency of resonant tunneling logic gate MOBILE. Electronics and Communications in Japan, 2002, 85, 1-6.	0.2	3
43	Operando Analysis of Electron Devices Using Nanodiamond Thin Films Containing Nitrogen-Vacancy Centers. ACS Omega, 2019, 4, 7459-7466.	3.5	3
44	In-plane dual-electrode triboelectric nanogenerator based on differential surface functionalization. Applied Physics Express, 2022, 15, 027006.	2.4	3
45	Tunable carbon nanotube diode with varying asymmetric geometry. AIP Advances, 2021, 11, 075212.	1.3	2
46	Dynamic Range Enhancement Via Linearized Output in Nanoelectromechanical Systems by Combining High-Order Harmonics. IEEE Transactions on Circuits and Systems II: Express Briefs, 2021, 68, 3251-3255.	3.0	2
47	Effect of metal electrodes on optically detected magnetic resonance of nitrogen vacancy centers in diamond. Japanese Journal of Applied Physics, 2020, 59, 122002.	1.5	2
48	Improvement in alignment of single-walled carbon nanotubes grown on quartz substrate. Physica Status Solidi C: Current Topics in Solid State Physics, 2011, 8, 561-563.	0.8	1
49	Impact of fixed charges at interfaces on the operation of top-gate carbon nanotube field-effect transistors. Physica Status Solidi C: Current Topics in Solid State Physics, 2011, 8, 567-569.	0.8	0
50	Effect of electrochemical functionalization of single-walled carbon nanotube electrodes in flexible enzymatic biofuel cells. Japanese Journal of Applied Physics, 0, , .	1.5	0
51	Interfacial Property of Metal/Nanotube Contacts in Carbon Nanotube Transistors. Hyomen Kagaku, 2007, 28, 40-45.	0.0	0
52	PMMA/Al ₂ O ₃ bilayer passivation for suppression of hysteresis in chemically doped carbon nanotube thin-film transistors. Japanese Journal of Applied Physics, 2022, 61, 034002.	1.5	0