
Manfred Ogris

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4586596/publications.pdf Version: 2024-02-01

MANEDED OCDIS

#	Article	IF	CITATIONS
1	PEGylated DNA/transferrin–PEI complexes: reduced interaction with blood components, extended circulation in blood and potential for systemic gene delivery. Gene Therapy, 1999, 6, 595-605.	2.3	1,168
2	The size of DNA/transferrin-PEI complexes is an important factor for gene expression in cultured cells. Gene Therapy, 1998, 5, 1425-1433.	2.3	562
3	Polylysine-based transfection systems utilizing receptor-mediated delivery. Advanced Drug Delivery Reviews, 1998, 30, 97-113.	6.6	487
4	Purification of polyethylenimine polyplexes highlights the role of free polycations in gene transfer. Journal of Gene Medicine, 2004, 6, 1102-1111.	1.4	417
5	Polycation-based DNA complexes for tumor-targeted gene deliveryin vivo. Journal of Gene Medicine, 1999, 1, 111-120.	1.4	406
6	Coupling of cell-binding ligands to polyethylenimine for targeted gene delivery. Gene Therapy, 1997, 4, 409-418.	2.3	358
7	Toward Synthetic Viruses: Endosomal pH-Triggered Deshielding of Targeted Polyplexes Greatly Enhances Gene Transfer in vitro and in vivo. Molecular Therapy, 2005, 11, 418-425.	3.7	310
8	Novel Shielded Transferrinâ^'Polyethylene Glycolâ^'Polyethylenimine/DNA Complexes for Systemic Tumor-Targeted Gene Transfer. Bioconjugate Chemistry, 2003, 14, 222-231.	1.8	295
9	The Internalization Route Resulting in Successful Gene Expression Depends on both Cell Line and Polyethylenimine Polyplex Type. Molecular Therapy, 2006, 14, 745-753.	3.7	289
10	Importance of Lateral and Steric Stabilization of Polyelectrolyte Gene Delivery Vectors for Extended Systemic Circulation. Molecular Therapy, 2002, 5, 463-472.	3.7	273
11	Tumor-targeted gene therapy: strategies for the preparation of ligand–polyethylene glycol–polyethylenimine/DNA complexes. Journal of Controlled Release, 2003, 91, 173-181.	4.8	265
12	Combination of Hypoglycemia and Metformin Impairs Tumor Metabolic Plasticity and Growth by Modulating the PP2A-GSK3β-MCL-1 Axis. Cancer Cell, 2019, 35, 798-815.e5.	7.7	212
13	Melittin Enables Efficient Vesicular Escape and Enhanced Nuclear Access of Nonviral Gene Delivery Vectors. Journal of Biological Chemistry, 2001, 276, 47550-47555.	1.6	200
14	Peptide-mediated RNA delivery: a novel approach for enhanced transfection of primary and post-mitotic cells. Nucleic Acids Research, 2001, 29, 3882-3891.	6.5	192
15	DNA/polyethylenimine transfection particles: Influence of ligands, polymer size, and PEGylation on internalization and gene expression. AAPS PharmSci, 2001, 3, 43-53.	1.3	178
16	Liposome based systems for systemic siRNA delivery: Stability in blood sets the requirements for optimal carrier design. Journal of Controlled Release, 2012, 158, 362-370.	4.8	175
17	Synthesis and Biological Evaluation of a Bioresponsive and Endosomolytic siRNAâ^'Polymer Conjugate. Molecular Pharmaceutics, 2009, 6, 752-762.	2.3	166
18	Cellular Dynamics of EGF Receptor–Targeted Synthetic Viruses. Molecular Therapy, 2007, 15, 1297-1305.	3.7	159

#	Article	IF	CITATIONS
19	Targeting tumors with non-viral gene delivery systems. Drug Discovery Today, 2002, 7, 479-485.	3.2	153
20	Melittin analogs with high lytic activity at endosomal pH enhance transfection with purified targeted PEI polyplexes. Journal of Controlled Release, 2006, 112, 240-248.	4.8	127
21	The Transport of Nanosized Gene Carriers Unraveled by Live-Cell Imaging. Angewandte Chemie - International Edition, 2006, 45, 1568-1572.	7.2	123
22	Tuning Nanoparticle Uptake: Live-Cell Imaging Reveals Two Distinct Endocytosis Mechanisms Mediated by Natural and Artificial EGFR Targeting Ligand. Nano Letters, 2012, 12, 3417-3423.	4.5	111
23	Oligoethylenimine-grafted polypropylenimine dendrimers as degradable and biocompatible synthetic vectors for gene delivery. Journal of Controlled Release, 2008, 132, 131-140.	4.8	106
24	Epidermal Growth Factor Receptor-targeted 131I-therapy of Liver Cancer Following Systemic Delivery of the Sodium Iodide Symporter Gene. Molecular Therapy, 2011, 19, 676-685.	3.7	99
25	Dual-targeted polyplexes: One step towards a synthetic virus for cancer gene therapy. Journal of Controlled Release, 2011, 152, 127-134.	4.8	96
26	Degradable gene carriers based on oligomerized polyamines. European Journal of Pharmaceutical Sciences, 2006, 29, 414-425.	1.9	94
27	Temperature Dependent Gene Expression Induced by PNIPAM-Based Copolymers:  Potential of Hyperthermia in Gene Transfer. Bioconjugate Chemistry, 2006, 17, 766-772.	1.8	92
28	Novel degradable oligoethylenimine acrylate ester-based pseudodendrimers for in vitro and in vivo gene transfer. Gene Therapy, 2008, 15, 18-29.	2.3	92
29	Acetal Linked Oligoethylenimines for Use As pH-Sensitive Gene Carriers. Bioconjugate Chemistry, 2008, 19, 1625-1634.	1.8	91
30	EGF Receptor-Targeted Synthetic Double-Stranded RNA Eliminates Glioblastoma, Breast Cancer, and Adenocarcinoma Tumors in Mice. PLoS Medicine, 2005, 3, e6.	3.9	90
31	Dynamics of photoinduced endosomal release of polyplexes. Journal of Controlled Release, 2008, 130, 175-182.	4.8	89
32	Nanoparticles bearing polyethyleneglycol-coupled transferrin as gene carriers: preparation and in vitro evaluation. International Journal of Pharmaceutics, 2003, 259, 93-101.	2.6	88
33	Drug Nanocarriers Labeled With Near-infrared-emitting Quantum Dots (Quantoplexes): Imaging Fast Dynamics of Distribution in Living Animals. Molecular Therapy, 2009, 17, 1849-1856.	3.7	87
34	The stem cell factor SOX2 regulates the tumorigenic potential in human gastric cancer cells. Carcinogenesis, 2014, 35, 942-950.	1.3	84
35	A dimethylmaleic acid–melittinâ€polylysine conjugate with reduced toxicity, pHâ€triggered endosomolytic activity and enhanced gene transfer potential. Journal of Gene Medicine, 2007, 9, 797-805.	1.4	83
36	Amine-reactive pyridylhydrazone-based PEG reagents for pH-reversible PEI polyplex shielding. European Journal of Pharmaceutical Sciences, 2008, 34, 309-320.	1.9	80

#	Article	IF	CITATIONS
37	Poly(I:C)-Mediated Tumor Growth Suppression in EGF-Receptor Overexpressing Tumors Using EGF-Polyethylene Glycol-Linear Polyethylenimine as Carrier. Pharmaceutical Research, 2011, 28, 731-741.	1.7	77
38	Gene Carriers Based on Hexanediol Diacrylate Linked Oligoethylenimine:  Effect of Chemical Structure of Polymer on Biological Properties. Bioconjugate Chemistry, 2006, 17, 1339-1345.	1.8	76
39	Stabilization of gene delivery systems by freeze-drying. International Journal of Pharmaceutics, 1997, 157, 233-238.	2.6	75
40	Intrinsic phospholipase A2 activity of adeno-associated virus is involved in endosomal escape of incoming particles. Virology, 2011, 409, 77-83.	1.1	73
41	Adenovirus Hexon Protein Enhances Nuclear Delivery and Increases Transgene Expression of Polyethylenimine/Plasmid DNA Vectors. Molecular Therapy, 2001, 4, 473-483.	3.7	69
42	Low generation PAMAM dendrimer and CpG free plasmids allow targeted and extended transgene expression in tumors after systemic delivery. Journal of Controlled Release, 2010, 146, 99-105.	4.8	68
43	An Acid Sensitive Ketal-Based Polyethylene Glycol-Oligoethylenimine Copolymer Mediates Improved Transfection Efficiency at Reduced Toxicity. Pharmaceutical Research, 2008, 25, 2937-2945.	1.7	67
44	pEPito: a significantly improved non-viral episomal expression vector for mammalian cells. BMC Biotechnology, 2010, 10, 20.	1.7	66
45	Targeted Radioiodine Therapy of Neuroblastoma Tumors following Systemic Nonviral Delivery of the Sodium Iodide Symporter Gene. Clinical Cancer Research, 2009, 15, 6079-6086.	3.2	65
46	Disconnecting the Yin and Yang Relation of Epidermal Growth Factor Receptor (EGFR)-Mediated Delivery: A Fully Synthetic, EGFR-Targeted Gene Transfer System Avoiding Receptor Activation. Human Gene Therapy, 2011, 22, 1463-1473.	1.4	64
47	Systemic Image-Guided Liver Cancer Radiovirotherapy Using Dendrimer-Coated Adenovirus Encoding the Sodium Iodide Symporter as Theranostic Gene. Journal of Nuclear Medicine, 2013, 54, 1450-1457.	2.8	64
48	Correlated Multimodal Imaging in Life Sciences: Expanding the Biomedical Horizon. Frontiers in Physics, 2020, 8, .	1.0	61
49	C- versus N-terminally linked melittin-polyethylenimine conjugates: the site of linkage strongly influences activity of DNA polyplexes. Journal of Gene Medicine, 2005, 7, 1335-1347.	1.4	58
50	Electrophoretic purification of tumor-targeted polyethylenimine-based polyplexes reduces toxic side effects in vivo. Journal of Controlled Release, 2007, 122, 236-245.	4.8	57
51	Differential behaviour of lipid based and polycation based gene transfer systems in transfecting primary human fibroblasts: a potential role of polylysine in nuclear transport. Biochimica Et Biophysica Acta - General Subjects, 1999, 1428, 57-67.	1.1	55
52	Reversibly stable thiopolyplexes for intracellular delivery of genes. Journal of Controlled Release, 2006, 115, 322-334.	4.8	55
53	Induction of Apoptosis in Murine Neuroblastoma by Systemic Delivery of Transferrin-Shielded siRNA Polyplexes for Downregulation of Ran. Oligonucleotides, 2008, 18, 161-174.	2.7	55
54	Tumor-targeted gene transfer with DNA polyplexes. Somatic Cell and Molecular Genetics, 2002, 27, 85-95.	0.7	54

#	Article	IF	CITATIONS
55	Development of a lyophilized plasmid/LPEI polyplex formulation with long-term stability—A step closer from promising technology to application. Journal of Controlled Release, 2011, 151, 246-255.	4.8	54
56	EGFR-Targeted Adenovirus Dendrimer Coating for Improved Systemic Delivery of the Theranostic NIS Gene. Molecular Therapy - Nucleic Acids, 2013, 2, e131.	2.3	54
57	Hyperthermia-Induced Targeting of Thermosensitive Gene Carriers to Tumors. Human Gene Therapy, 2008, 19, 1283-1292.	1.4	51
58	Development of Long-circulating Polyelectrolyte Complexes for Systemic Delivery of Genes. Journal of Drug Targeting, 2002, 10, 93-98.	2.1	47
59	Tissue-dependent factors affect gene delivery to tumors in vivo. Gene Therapy, 2003, 10, 1079-1088.	2.3	47
60	PolyIC GE11 polyplex inhibits EGFRâ€overexpressing tumors. IUBMB Life, 2012, 64, 324-330.	1.5	47
61	Image-Guided Tumor-Selective Radioiodine Therapy of Liver Cancer After Systemic Nonviral Delivery of the Sodium Iodide Symporter Gene. Human Gene Therapy, 2011, 22, 1563-1574.	1.4	44
62	Influence of the DNA complexation medium on the transfection efficiency of lipospermine/DNA particles. Gene Therapy, 1998, 5, 855-860.	2.3	43
63	To Be Targeted: Is the Magic Bullet Concept a Viable Option for Synthetic Nucleic Acid Therapeutics?. Human Gene Therapy, 2011, 22, 799-807.	1.4	43
64	Systemic TNFα Gene Therapy Synergizes With Liposomal Doxorubicine in the Treatment of Metastatic Cancer. Molecular Therapy, 2013, 21, 300-308.	3.7	42
65	DNA polyplexes based on degradable oligoethylenimine-derivatives: Combination with EGF receptor targeting and endosomal release functions. Journal of Controlled Release, 2006, 116, 115-122.	4.8	40
66	Adenoviral Vectors Coated with PAMAM Dendrimer Conjugates Allow CAR Independent Virus Uptake and Targeting to the EGF Receptor. Molecular Pharmaceutics, 2013, 10, 606-618.	2.3	40
67	MR Characterization of Mild Hyperthermia-Induced Gadodiamide Release From Thermosensitive Liposomes in Solid Tumors. Investigative Radiology, 2008, 43, 877-892.	3.5	39
68	Sustained, high transgene expression in liver with plasmid vectors using optimized promoterâ€enhancer combinations. Journal of Gene Medicine, 2011, 13, 382-391.	1.4	39
69	In Vivo Imaging Enables High Resolution Preclinical Trials on Patients' Leukemia Cells Growing in Mice. PLoS ONE, 2012, 7, e52798.	1.1	39
70	Specific Targets in Tumor Tissue for the Delivery of Therapeutic Genes. Anti-Cancer Agents in Medicinal Chemistry, 2005, 5, 157-171.	7.0	35
71	Bacterial ghosts as adjuvant to oxaliplatin chemotherapy in colorectal carcinomatosis. Oncolmmunology, 2018, 7, e1424676.	2.1	35
72	Imaging and targeted therapy of pancreatic ductal adenocarcinoma using the theranostic sodium iodide symporter (NIS) gene. Oncotarget, 2017, 8, 33393-33404.	0.8	33

#	Article	IF	CITATIONS
73	Mechanistic profiling of the release kinetics of siRNA from lipidoid-polymer hybrid nanoparticles in vitro and in vivo after pulmonary administration. Journal of Controlled Release, 2019, 310, 82-93.	4.8	33
74	In vivo chemoresistance of prostate cancer in metronomic cyclophosphamide therapy. Journal of Proteomics, 2010, 73, 1342-1354.	1.2	32
75	EGFR-Homing dsRNA Activates Cancer-Targeted Immune Response and Eliminates Disseminated EGFR-Overexpressing Tumors in Mice. Clinical Cancer Research, 2011, 17, 1033-1043.	3.2	30
76	Adenovirus-Derived Vectors for Prostate Cancer Gene Therapy. Human Gene Therapy, 2010, 21, 795-805.	1.4	29
77	The establishment of an up-scaled micro-mixer method allows the standardized and reproducible preparation of well-defined plasmid/LPEI polyplexes. European Journal of Pharmaceutics and Biopharmaceutics, 2011, 77, 182-185.	2.0	29
78	Cryoconserved shielded and EGF receptor targeted DNA polyplexes: cellular mechanisms. European Journal of Pharmaceutics and Biopharmaceutics, 2005, 60, 279-285.	2.0	28
79	Stability and release characteristics of poly(d,l-lactide-co-glycolide) encapsulated CaPi-DNA coprecipitation. International Journal of Pharmaceutics, 2004, 269, 61-70.	2.6	27
80	Polyhydroxyethylaspartamide-spermine copolymers: Efficient vectors for gene delivery. Journal of Controlled Release, 2008, 131, 54-63.	4.8	27
81	Clinical Adenoviral Gene Therapy for Prostate Cancer. Human Gene Therapy, 2010, 21, 807-813.	1.4	25
82	Improved <i>in vivo</i> gene transfer into tumor tissue by stabilization of pseudodendritic oligoethylenimineâ€based polyplexes. Journal of Gene Medicine, 2010, 12, 180-193.	1.4	24
83	Assessment of Raman spectroscopy as a fast and non-invasive method for total stratum corneum thickness determination of pig skin. International Journal of Pharmaceutics, 2015, 495, 482-484.	2.6	24
84	Controlled removal of a nonviral episomal vector from transfected cells. Gene, 2010, 466, 36-42.	1.0	21
85	Reintroducing the Sodium–Iodide Symporter to Anaplastic Thyroid Carcinoma. Thyroid, 2017, 27, 1534-1543.	2.4	21
86	Failure to generate atheroprotective apolipoprotein AI phenotypes using synthetic RNA/DNA oligonucleotides (chimeraplasts). Journal of Gene Medicine, 2003, 5, 795-802.	1.4	20
87	Systemic tumorâ€ŧargeted sodium iodide symporter (NIS) gene therapy of hepatocellular carcinoma mediated by B6 peptide polyplexes. Journal of Gene Medicine, 2017, 19, e2957.	1.4	20
88	Transient Hepatic Overexpression of Insulin-Like Growth Factor 2 Induces Free Cholesterol and Lipid Droplet Formation. Frontiers in Physiology, 2016, 7, 147.	1.3	19
89	Capsomer-Specific Fluorescent Labeling of Adenoviral Vector Particles Allows for Detailed Analysis of Intracellular Particle Trafficking and the Performance of Bioresponsive Bonds for Vector Capsid Modifications. Human Gene Therapy, 2010, 21, 1155-1167.	1.4	18
90	Gene Therapy for Advanced Melanoma: Selective Targeting and Therapeutic Nucleic Acids. Journal of Drug Delivery, 2013, 2013, 1-15.	2.5	18

#	Article	IF	CITATIONS
91	Stabilized Nonviral Formulations for the Delivery of MCP-1 Gene into Cells of the Vasculoendothelial System. Pharmaceutical Research, 2004, 21, 683-691.	1.7	17
92	Live in vivo imaging of Egr-1 promoter activity during neonatal development, liver regeneration and wound healing. BMC Developmental Biology, 2011, 11, 28.	2.1	17
93	Novel PAMAM-PEG-Peptide Conjugates for siRNA Delivery Targeted to the Transferrin and Epidermal Growth Factor Receptors. Journal of Personalized Medicine, 2018, 8, 4.	1.1	17
94	Hyperthermia induced targeting of thermosensitive gene carriers to tumors. Human Gene Therapy, 2008, 19, 081015093227032.	1.4	17
95	Endothelial Retargeting of AAV9 In Vivo. Advanced Science, 2022, 9, e2103867.	5.6	17
96	Functional Analysis of Genomic DNA, cDNA, and Nucleotide Sequence of the Mature C-Type Natriuretic Peptide Gene in Vascular Cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 2004, 24, 1646-1651.	1.1	16
97	Generation of a tumor- and tissue-specific episomal non-viral vector system. BMC Biotechnology, 2013, 13, 49.	1.7	15
98	Amorphous Silica Particles Relevant in Food Industry Influence Cellular Growth and Associated Signaling Pathways in Human Gastric Carcinoma Cells. Nanomaterials, 2017, 7, 18.	1.9	14
99	Peptide-Targeted Polyplexes for Aerosol-Mediated Gene Delivery to CD49f-Overexpressing Tumor Lesions in Lung. Molecular Therapy - Nucleic Acids, 2019, 18, 774-786.	2.3	14
100	Gene therapy and imaging in preclinical and clinical oncology: recent developments in therapy and theranostics. Therapeutic Delivery, 2014, 5, 1275-1296.	1.2	13
101	Synthesis of Polyethylenimine-Based Nanocarriers for Systemic Tumor Targeting of Nucleic Acids. , 2013, 948, 105-120.		12
102	De-targeting by miR-143 decreases unwanted transgene expression in non-tumorigenic cells. Gene Therapy, 2013, 20, 1104-1109.	2.3	12
103	Evaluation of improved PAMAM-G5 conjugates for gene delivery targeted to the transferrin receptor. European Journal of Pharmaceutics and Biopharmaceutics, 2015, 94, 116-122.	2.0	12
104	Fluorescence- and computed tomography for assessing the biodistribution of siRNA after intratracheal application in mice. International Journal of Pharmaceutics, 2017, 525, 359-366.	2.6	12
105	Multimodal Fluorescence and Bioluminescence Imaging Reveals Transfection Potential of Intratracheally Administered Polyplexes for Breast Cancer Lung Metastases. Human Gene Therapy, 2017, 28, 1202-1213.	1.4	12
106	CD47-targeted cancer immunogene therapy: Secreted SIRPα-Fc fusion protein eradicates tumors by macrophage and NK cell activation. Molecular Therapy - Oncolytics, 2021, 23, 192-204.	2.0	12
107	Simultaneous determination of active component and vehicle penetration from F-DPPC liposomes into porcine skin layers. European Journal of Pharmaceutics and Biopharmaceutics, 2015, 97, 90-95.	2.0	11
108	Novel Biocompatible Cationic Copolymers Based on Polyaspartylhydrazide Being Potent as Gene Vector on Tumor Cells. Pharmaceutical Research, 2007, 24, 2213-2222.	1.7	10

#	Article	IF	CITATIONS
109	Effects of hypoxia and limited diffusion in tumor cell microenvironment on bystander effect of P450 prodrug therapy. Cancer Gene Therapy, 2006, 13, 771-779.	2.2	9
110	Acrolein: unwanted side product or contribution to antiangiogenic properties of metronomic cyclophosphamide therapy?. Journal of Cellular and Molecular Medicine, 2008, 12, 2704-2716.	1.6	9
111	Up-Scaled Synthesis and Characterization of Nonviral Gene Delivery Particles for TransientIn VitroandIn VivoTransgene Expression. Human Gene Therapy Methods, 2016, 27, 87-97.	2.1	9
112	Nucleic acid therapeutics: concepts for targeted delivery to solid tumors. Therapeutic Delivery, 2010, 1, 91-107.	1.2	8
113	Near-infrared-emitting semiconductor quantum dots for tumor imaging and targeting. Current Opinion in Molecular Therapeutics, 2010, 12, 331-9.	2.8	8
114	Nucleic Acid Based Therapeutics for Tumor Therapy. Anti-Cancer Agents in Medicinal Chemistry, 2006, 6, 563-570.	0.9	7
115	Synthesis of Polyethylenimine-Based Nanocarriers for Systemic Tumor Targeting of Nucleic Acids. Methods in Molecular Biology, 2019, 1943, 83-99.	0.4	7
116	Luminescent and fluorescent triple reporter plasmid constructs for Wnt, Hedgehog and Notch pathway. PLoS ONE, 2019, 14, e0226570.	1.1	7
117	Combined Chemisorption and Complexation Generate siRNA Nanocarriers with Biophysics Optimized for Efficient Gene Knockdown and Air–Blood Barrier Crossing. ACS Applied Materials & Interfaces, 2020, 12, 30095-30111.	4.0	7
118	Firefly Luciferase-Based Reporter Gene Assay for Investigating Nanoparticle-Mediated Nucleic Acid Delivery. Methods in Molecular Biology, 2019, 1943, 227-239.	0.4	5
119	Synthesis of Linear Polyethylenimine and Use in Transfection. Cold Spring Harbor Protocols, 2012, 2012, pdb.prot067868.	0.2	4
120	Receptor Crosslinking in Drug Delivery: Detour to the Lysosome?. Molecular Therapy, 2015, 23, 1802-1804.	3.7	4
121	Nucleic Acid Carrier Systems Based on Polyethylenimine Conjugates for the Treatment of Metastatic Tumors. Current Medicinal Chemistry, 2013, 20, 3456-3470.	1.2	4
122	Biopharmaceuticals and gene vectors opening new avenues in cancer immune therapy. Therapeutic Delivery, 2016, 7, 419-422.	1.2	3
123	Polycation-based DNA complexes for tumor-targeted gene delivery in vivo. , 1999, 1, 111.		3
124	Non-viral cancer gene therapy – what is best? ◾. Drug Discovery Today, 2003, 8, 63.	3.2	2
125	Cancer gene therapies come of age. Therapeutic Delivery, 2010, 1, 211-214.	1.2	2
126	Cadmium Telluride Quantum Dots as a Fluorescence Marker for Adipose Tissue Grafts. Annals of Plastic Surgery, 2017, 78, 217-222.	0.5	2

8

#	Article	IF	CITATIONS
127	Surface Modification of E. coli Outer Membrane Vesicles with Glycosylphosphatidylinositol-Anchored Proteins: Generating Pro/Eukaryote Chimera Constructs. Membranes, 2021, 11, 428.	1.4	2
128	Transmembrane Targeting of DNA with Membrane Active Peptides. , 2002, , 441-458.		2
129	Structure-based peptide ligand design for improved epidermal growth factor receptor targeted gene delivery. European Journal of Pharmaceutics and Biopharmaceutics, 2022, 176, 211-221.	2.0	2
130	Receptor-Mediated Delivery of Proteins and Peptides to Tumors. , 2009, , 269-295.		1
131	siRNA therapeutics: chances, pitfalls and future potential. Therapeutic Delivery, 2011, 2, 1101-1104.	1.2	1
132	Gene therapy in the clinics: shifting into the next gear. Therapeutic Delivery, 2013, 4, 1359-1363.	1.2	1
133	Nucleic Acid-Based Therapeutics for Glioblastoma. Anti-Cancer Agents in Medicinal Chemistry, 2011, 11, 693-699.	0.9	1
134	Investigating 3R In Vivo Approaches for Bioâ€Distribution and Efficacy Evaluation of Nucleic Acid Nanocarriers: Studies on Peptideâ€Mimicking Ionizable Lipid. Small, 2022, , 2107768.	5.2	1
135	Transferrin Receptor Mediated Delivery of Protein and Peptide Drugs into Tumors. , 2006, , 205-223.		0
136	Corrigendum to "Cellular Dynamics of EGF Receptor–targeted Synthetic Viruses― Molecular Therapy, 2007, 15, 1735.	3.7	0
137	Targeted therapy of cancer stem cells: science or fiction. Therapeutic Delivery, 2013, 4, 135-138.	1.2	0
138	In Vivo Imaging In the Individualized Mouse Model of Acute Lymphoblastic Leukemia Enables Highly Sensitive and Continuous Follow up of Patient-Derived Xenografts. Blood, 2010, 116, 3259-3259.	0.6	0
139	Highly Sensitive Bioluminescence in Vivo Imaging Enables Individualized Preclinical Treatment Trials On Patients ALL Tumor Cells Growing in Mice Blood, 2012, 120, 2602-2602.	0.6	0
140	In vivo tracking of adipose tissue grafts with cadmium-telluride quantum dots. Archives of Plastic Surgery, 2018, 45, 111-117.	0.4	0