Sara Fateixa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/458656/publications.pdf

Version: 2024-02-01

47 papers 1,020 citations

430874 18 h-index 454955 30 g-index

47 all docs

47 docs citations

47 times ranked

1445 citing authors

#	Article	IF	CITATIONS
1	A versatile synthetic route towards gelatin-silica hybrids and magnetic composite colloidal nanoparticles. Advanced Composites and Hybrid Materials, 2022, 5, 884-898.	21.1	20
2	Dendrimer stabilized nanoalloys for inkjet printing of surface-enhanced Raman scattering substrates. Journal of Colloid and Interface Science, 2022, 612, 342-354.	9.4	12
3	Carbamazepine polymorphism: A re-visitation using Raman imaging. International Journal of Pharmaceutics, 2022, 617, 121632.	5 . 2	5
4	Interaction of zirconia with magnesium hydride and its influence on the hydrogen storage behavior of magnesium hydride. International Journal of Hydrogen Energy, 2022, 47, 21760-21771.	7.1	8
5	Interfacial assembly of zinc(II) phthalocyanines on graphene oxide (GO): Stable "turn-off-on― nanoplatforms to detect G-quadruplexes (G4). Journal of Colloid and Interface Science, 2022, 627, 900-912.	9.4	1
6	Inkjet Printing of Ag and Polystyrene Nanoparticle Emulsions for the One-Step Fabrication of Hydrophobic Paper-Based Surface-Enhanced Raman Scattering Substrates. ACS Applied Nano Materials, 2021, 4, 4484-4495.	5.0	29
7	Graphene Oxide and Graphene Quantum Dots as Delivery Systems of Cationic Porphyrins: Photo-Antiproliferative Activity Evaluation towards T24 Human Bladder Cancer Cells. Pharmaceutics, 2021, 13, 1512.	4.5	18
8	Colloidal dendritic nanostructures of gold and silver for SERS analysis of water pollutants. Journal of Molecular Liquids, 2021, 337, 116608.	4.9	23
9	Biomimetic Graphene/Spongin Scaffolds for Improved Osteoblasts Bioactivity via Dynamic Mechanical Stimulation. Macromolecular Bioscience, 2021, 22, 2100311.	4.1	3
10	Dendrimerâ€Based Gold Nanostructures for SERS Detection of Pesticides in Water. European Journal of Inorganic Chemistry, 2020, 2020, 1153-1162.	2.0	9
11	Surface-Enhanced Raman Scattering due to a Synergistic Effect on ZnS and Graphene Oxide. Journal of Physical Chemistry C, 2020, 124, 12742-12751.	3.1	14
12	A comparative study on emergent pollutants photo-assisted degradation using ruthenium modified titanate nanotubes and nanowires as catalysts. Journal of Environmental Sciences, 2020, 92, 38-51.	6.1	11
13	Can contaminated waters or wastewater be alternative sources for technology-critical elements? The case of removal and recovery of lanthanides. Journal of Hazardous Materials, 2019, 380, 120845.	12.4	19
14	Ruthenium-Modified Titanate Nanowires for the Photocatalytic Oxidative Removal of Organic Pollutants from Water. ACS Applied Nano Materials, 2019, 2, 1341-1349.	5.0	15
15	Gold loaded textile fibres as substrates for SERS detection. Journal of Molecular Structure, 2019, 1185, 333-340.	3.6	19
16	An integrated approach for trace detection of pollutants in water using polyelectrolyte functionalized magneto-plasmonic nanosorbents. Scientific Reports, 2019, 9, 19647.	3.3	17
17	Magnetite-Supported Gold Nanostars for the Uptake and SERS Detection of Tetracycline. Nanomaterials, 2019, 9, 31.	4.1	31
18	Raman and Fluorescence Imaging of Polyoxometalate Composite Agarose Films. European Journal of Inorganic Chemistry, 2019, 2019, 477-481.	2.0	2

#	Article	IF	Citations
19	Novel sintering-free scaffolds obtained by additive manufacturing for concurrent bone regeneration and drug delivery: Proof of concept. Materials Science and Engineering C, 2019, 94, 426-436.	7.3	35
20	Surface-Enhanced Raman Scattering Spectral Imaging for the Attomolar Range Detection of Crystal Violet in Contaminated Water. ACS Omega, 2018, 3, 4331-4341.	3.5	39
21	A general strategy to prepare SERS active filter membranes for extraction and detection of pesticides in water. Talanta, 2018, 182, 558-566.	5. 5	53
22	Pressure-dependent large area synthesis and electronic structure of MoS 2. Materials Research Bulletin, 2018, 97, 265-271.	5.2	5
23	SERS Research Applied to Polymer Based Nanocomposites. , 2018, , .		0
24	Porous Carrageenan-Derived Carbons for Efficient Ciprofloxacin Removal from Water. Nanomaterials, 2018, 8, 1004.	4.1	21
25	Hybrids Based on Graphene Oxide and Porphyrin as Tools for Detection and Stabilization of DNA G-Quadruplexes. ACS Omega, 2018, 3, 11184-11191.	3.5	30
26	Structure and photoactivity for hydrogen production of CdS nanorods modified with In, Ga, Ag-In and Ag-Ga and prepared by solvothermal method. Materials Today Energy, 2018, 9, 345-358.	4.7	11
27	Raman imaging studies on the adsorption of methylene blue species onto silver modified linen fibers. Journal of Raman Spectroscopy, 2017, 48, 795-802.	2.5	17
28	Defect concentration in nitrogen-doped graphene grown on Cu substrate: A thickness effect. Physica B: Condensed Matter, 2017, 513, 62-68.	2.7	3
29	Luminescent Carrageenan Hydrogels Containing Lanthanopolyoxometalates. European Journal of Inorganic Chemistry, 2017, 2017, 4976-4981.	2.0	5
30	SERS Detection of Penicillin G Using Magnetite Decorated with Gold Nanoparticles. Magnetochemistry, 2017, 3, 32.	2.4	19
31	A General Route for Growing Metal Sulfides onto Graphene Oxide and Exfoliated Graphite Oxide. Nanomaterials, 2017, 7, 245.	4.1	17
32	SERS and Raman imaging as a new tool to monitor dyeing on textile fibres. Journal of Raman Spectroscopy, 2016, 47, 1239-1246.	2.5	18
33	SERS studies of DNA nucleobases using new silver poly(methyl methacrylate) nanocomposites as analytical platforms. Journal of Raman Spectroscopy, 2015, 46, 47-53.	2.5	18
34	Silver-gelatine bionanocomposites for qualitative detection of a pesticide by SERS. Analyst, The, 2015, 140, 1693-1701.	3.5	12
35	Hybrid nanostructures for SERS: materials development and chemical detection. Physical Chemistry Chemical Physics, 2015, 17, 21046-21071.	2.8	155
36	Multiple Emulsion Templating of Hybrid Ag/SiO ₂ Capsules for Antibacterial Applications. Particle and Particle Systems Characterization, 2015, 32, 561-566.	2.3	10

#	Article	IF	CITATIONS
37	Raman Signal Enhancement Dependence on the Gel Strength of Ag/Hydrogels Used as SERS Substrates. Journal of Physical Chemistry C, 2014, 118, 10384-10392.	3.1	20
38	\hat{l}^2 -Carrageenan hydrogel nanocomposites with release behavior mediated by morphological distinct Au nanofillers. Carbohydrate Polymers, 2013, 91, 100-109.	10.2	86
39	Resizing of Colloidal Gold Nanorods and Morphological Probing by SERS. Journal of Physical Chemistry C, 2013, 117, 20343-20350.	3.1	13
40	Effect of colloidal silver and gold nanoparticles on the thermal behavior of poly(t-butyl acrylate) composites. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 436, 231-236.	4.7	11
41	Composite blends of gold nanorods and poly(t-butylacrylate) beads as new substrates for SERS. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2013, 113, 100-106.	3.9	15
42	SERS study on adenine using a Ag/poly(t-butylacrylate) nanocomposite. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2013, 101, 36-39.	3.9	23
43	Swelling and Release Properties of Functional \hat{l}^2 -carrageenan Hydrogel Nanocomposites. Materials Research Society Symposia Proceedings, 2012, 1403, 164.	0.1	3
44	Polymer based silver nanocomposites as versatile solid film and aqueous emulsion SERS substrates. Journal of Materials Chemistry, 2011, 21, 15629.	6.7	30
45	Shaping Gold Nanocomposites with Tunable Optical Properties. Langmuir, 2010, 26, 11407-11412.	3.5	21
46	Anti-fungal activity of SiO2/Ag2S nanocomposites against Aspergillus niger. Colloids and Surfaces B: Biointerfaces, 2009, 74, 304-308.	5.0	29
47	Biofunctionalized magnetic hydrogel nanospheres of magnetite and κ-carrageenan. Nanotechnology, 2009, 20, 355602.	2.6	45