
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4586350/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Reduction of pulse "antinutritional―content by optimizing pulse canning process is insufficient to improve fat-soluble vitamin bioavailability. Food Chemistry, 2022, 370, 131021.	8.2	8
2	Bioaccessibility and uptake by Caco-2 cells of carotenoids from cereal-based products enriched with butternut squash (Cucurbita moschata L.). Food Chemistry, 2022, 385, 132595.	8.2	10
3	P-glycoprotein (ABCB1) is involved in vitamin K efflux. Food Chemistry, 2021, 343, 128510.	8.2	8
4	From carotenoid intake to carotenoid blood and tissue concentrations $\hat{a} \in $ implications for dietary intake recommendations. Nutrition Reviews, 2021, 79, 544-573.	5.8	113
5	Evaluation of vitamin D bioaccessibility and mineral solubility from test meals containing meat and/or cereals and/or pulses using in vitro digestion. Food Chemistry, 2021, 347, 128621.	8.2	14
6	Mechanisms of absorption of vitamin D ₃ delivered in protein nanoparticles in the absence and presence of fat. Food and Function, 2021, 12, 4935-4946.	4.6	6
7	In vitro solubilization of fat-soluble vitamins in structurally defined mixed intestinal assemblies. Journal of Colloid and Interface Science, 2021, 589, 229-241.	9.4	6
8	One-Step Extraction of Olive Phenols from Aqueous Solution Using β-Cyclodextrin in the Solid State, a Simple Eco-Friendly Method Providing Photochemical Stability to the Extracts. Molecules, 2021, 26, 4463.	3.8	2
9	Pulses Twice a Week in Replacement of Meat Modestly Increases Diet Sustainability. Nutrients, 2021, 13, 3059.	4.1	7
10	The Complex ABCG5/ABCG8 Regulates Vitamin D Absorption Rate and Contributes to its Efflux from the Intestine. Molecular Nutrition and Food Research, 2021, 65, e2100617.	3.3	5
11	Vitamin A Deficiency during the Perinatal Period and First Weeks of Life Modifies Vitamin A and Lipid Postprandial Metabolism in Both Female and Male Young Rats. Molecular Nutrition and Food Research, 2021, 65, 2100451.	3.3	1
12	Comparison of α-Tocopherol, α-Tocopherol Acetate, and α-Tocopheryl Polyethylene Glycol Succinate 1000 Absorption by Caco-2 TC7 Intestinal Cells. Nutrients, 2021, 13, 129.	4.1	5
13	β arotene Bioavailability and Conversion Efficiency Are Significantly Affected by Sex in Rats. Molecular Nutrition and Food Research, 2021, 65, e2100650.	3.3	9
14	Food Structure Modulates the Bioavailability of Triglycerides and Vitamin D, and Partly That of Lutein: A Randomized Trial with a Crossover Design in Adults. Molecular Nutrition and Food Research, 2020, 64, e2000228.	3.3	8
15	Evaluation of vitamin D bioaccessibility and iron solubility from test meals containing meat and/or cereals and/or legumes. Proceedings of the Nutrition Society, 2020, 79, .	1.0	1
16	Comparison of the bioavailability and intestinal absorption sites of phytoene, phytofluene, lycopene and β-carotene. Food Chemistry, 2019, 300, 125232.	8.2	32
17	Simple Fast Quantification of Cholecalciferol, 25-Hydroxyvitamin D and 1,25-Dihydroxyvitamin D in Adipose Tissue Using LC-HRMS/MS. Nutrients, 2019, 11, 1977.	4.1	14
18	The gut: a regulatory hall governing fat-soluble micronutrient absorption. American Journal of Clinical Nutrition, 2019, 110, 1045-1046.	4.7	5

#	Article	IF	CITATIONS
19	Mechanisms of Carotenoid Intestinal Absorption: Where Do We Stand?. Nutrients, 2019, 11, 838.	4.1	130
20	The Presence of Pulses within a Meal can Alter Fatâ€Soluble Vitamin Bioavailability. Molecular Nutrition and Food Research, 2019, 63, e1801323.	3.3	10
21	ABCB1 (Pâ€glycoprotein) regulates vitamin D absorption and contributes to its transintestinal efflux. FASEB Journal, 2019, 33, 2084-2094.	0.5	25
22	Characterization of hydroxytyrosol-β-cyclodextrin complexes in solution and in the solid state, a potential bioactive ingredient. LWT - Food Science and Technology, 2019, 102, 317-323.	5.2	17
23	Vitamin E intestinal absorption: Regulation of membrane transport across the enterocyte. IUBMB Life, 2019, 71, 416-423.	3.4	33
24	Opposite Effects of the Spinach Food Matrix on Lutein Bioaccessibility and Intestinal Uptake Lead to Unchanged Bioavailability Compared to Pure Lutein. Molecular Nutrition and Food Research, 2018, 62, e1800185.	3.3	8
25	Effect of Foods and β-Cyclodextrin on the Bioaccessibility and the Uptake by Caco-2 Cells of Hydroxytyrosol from Either a Pure Standard or Alperujo. Journal of Agricultural and Food Chemistry, 2018, 66, 4614-4620.	5.2	13
26	Direct and Rapid Profiling of Biophenols in Olive Pomace by UHPLC-DAD-MS. Food Analytical Methods, 2018, 11, 1001-1010.	2.6	31
27	β-Cyclodextrin Does not Alter the Bioaccessibility and the Uptake by Caco-2 Cells of Olive By-Product Phenolic Compounds. Nutrients, 2018, 10, 1653.	4.1	12
28	Nutritional Composition and Bioactive Content of Legumes: Characterization of Pulses Frequently Consumed in France and Effect of the Cooking Method. Nutrients, 2018, 10, 1668.	4.1	144
29	Phytoene and Phytofluene Isolated from a Tomato Extract are Readily Incorporated in Mixed Micelles and Absorbed by Cacoâ€2 Cells, as Compared to Lycopene, and SRâ€BI is Involved in their Cellular Uptake. Molecular Nutrition and Food Research, 2018, 62, e1800703.	3.3	37
30	Efficacy of two vitamin E formulations in patients with abetalipoproteinemia and chylomicron retention disease. Journal of Lipid Research, 2018, 59, 1640-1648.	4.2	16
31	Re-assembled casein micelles improve in vitro bioavailability of vitamin D in a Caco-2 cell model. Food and Function, 2017, 8, 2133-2141.	4.6	50
32	Comparison of the Micellar Incorporation and the Intestinal Cell Uptake of Cholecalciferol, 25-Hydroxycholecalciferol and 1-1±-Hydroxycholecalciferol. Nutrients, 2017, 9, 1152.	4.1	17
33	Vitamin E Bioavailability: Mechanisms of Intestinal Absorption in the Spotlight. Antioxidants, 2017, 6, 95.	5.1	102
34	A Combination of Single-Nucleotide Polymorphisms Is Associated with Interindividual Variability in Cholecalciferol Bioavailability in Healthy Men. Journal of Nutrition, 2016, 146, 2421-2428.	2.9	17
35	Pinoresinol of olive oil decreases vitamin D intestinal absorption. Food Chemistry, 2016, 206, 234-238.	8.2	14
36	Micellar lipid composition affects micelle interaction with class B scavenger receptor extracellular loops. Journal of Lipid Research, 2015, 56, 1123-1133.	4.2	22

#	Article	IF	CITATIONS
37	Intestinal absorption of vitamin D: from the meal to the enterocyte. Food and Function, 2015, 6, 356-362.	4.6	63
38	Fat-soluble vitamin intestinal absorption: Absorption sites in the intestine and interactions for absorption. Food Chemistry, 2015, 172, 155-160.	8.2	148
39	Hesperidin increases intestinal l̂²,l̂²-carotene 15-15′ mono-oxygenase 1 (BCMO1) activity in Mongolian gerbils (Meriones unguiculatus) fed with l̂²-carotene-free diet. Food Chemistry, 2014, 159, 477-485.	8.2	7
40	ABCG1 is involved in vitamin E efflux. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2014, 1841, 1741-1751.	2.4	28
41	Clusterâ€determinant 36 (CD36) impacts on vitamin E postprandial response. Molecular Nutrition and Food Research, 2014, 58, 2297-2306.	3.3	35
42	Intestinal Scavenger Receptors Are Involved in Vitamin K1 Absorption. Journal of Biological Chemistry, 2014, 289, 30743-30752.	3.4	58
43	β-Lactoglobulin as a Vector for β-Carotene Food Fortification. Journal of Agricultural and Food Chemistry, 2014, 62, 5916-5924.	5.2	24
44	Fatty acids affect micellar properties and modulate vitamin D uptake and basolateral efflux in Caco-2 cells. Journal of Nutritional Biochemistry, 2013, 24, 1751-1757.	4.2	61
45	Cholesterol transport via ABCA1: New insights from solid-phase binding assay. Biochimie, 2013, 95, 957-961.	2.6	19
46	Interlocking of β-carotene in beta-lactoglobulin aggregates produced under high pressure. Food Chemistry, 2013, 139, 253-260.	8.2	24
47	CD36 and SR-BI Are Involved in Cellular Uptake of Provitamin A Carotenoids by Caco-2 and HEK Cells, and Some of Their Genetic Variants Are Associated with Plasma Concentrations of These Micronutrients in Humans. Journal of Nutrition, 2013, 143, 448-456.	2.9	109
48	Absorption of Vitamin A and Carotenoids by the Enterocyte: Focus on Transport Proteins. Nutrients, 2013, 5, 3563-3581.	4.1	222
49	Respective contributions of intestinal Niemann-Pick C1-like 1 and scavenger receptor class B type I to cholesterol and tocopherol uptake: <i>in vivov</i> . <i>in vitro</i> studies. British Journal of Nutrition, 2012, 107, 1296-1304.	2.3	46
50	Answer to Dr. Gylling's Letter to the Editor. Molecular Nutrition and Food Research, 2012, 56, 1195-1196.	3.3	0
51	Simple and fast HPLC method for simultaneous determination of retinol, tocopherols, coenzyme Q10 and carotenoids in complex samples. Food Chemistry, 2012, 134, 2560-2564.	8.2	79
52	Proteins involved in uptake, intracellular transport and basolateral secretion of fat-soluble vitamins and carotenoids by mammalian enterocytes. Progress in Lipid Research, 2011, 50, 388-402.	11.6	193
53	Absorption intestinale des vitamines liposolubles. Oleagineux Corps Gras Lipides, 2011, 18, 53-58.	0.2	0
54	Vitamin D intestinal absorption is not a simple passive diffusion: Evidences for involvement of cholesterol transporters. Molecular Nutrition and Food Research, 2011, 55, 691-702.	3.3	161

#	Article	IF	CITATIONS
55	Phytosterols can impair vitamin D intestinal absorption in vitro and in mice. Molecular Nutrition and Food Research, 2011, 55, S303-11.	3.3	55
56	Vitamin E decreases endogenous cholesterol synthesis and apo-AI-mediated cholesterol secretion in Caco-2 cells. Journal of Nutritional Biochemistry, 2010, 21, 1207-1213.	4.2	48
57	ATP-binding cassette transporter A1 is significantly involved in the intestinal absorption of α- and γ-tocopherol but not in that of retinyl palmitate in mice. American Journal of Clinical Nutrition, 2009, 89, 177-184.	4.7	71
58	A Carboxy-Terminal Affinity Tag for the Purification and Mass Spectrometric Characterization of Integral Membrane Proteins. Journal of Proteome Research, 2009, 8, 2388-2396.	3.7	36
59	Human fasting plasma concentrations of vitamin E and carotenoids, and their association with genetic variants in apo C-III, cholesteryl ester transfer protein, hepatic lipase, intestinal fatty acid binding protein and microsomal triacylglycerol transfer protein. British Journal of Nutrition, 2009, 101. 680-687.	2.3	57
60	Competition Effects on Carotenoid Absorption by Caco-2 Cells. , 2009, , 381-386.		0
61	Comparison of different vehicles to study the effect of tocopherols on gene expression in intestinal cells. Free Radical Research, 2008, 42, 523-530.	3.3	38
62	Lycopene Absorption in Human Intestinal Cells and in Mice Involves Scavenger Receptor Class B Type I but Not Niemann-Pick C1-Like 1. Journal of Nutrition, 2008, 138, 1432-1436.	2.9	118
63	Differential effect of dietary antioxidant classes (carotenoids, polyphenols, vitamins C and E) on lutein absorption. British Journal of Nutrition, 2007, 97, 440-446.	2.3	79
64	β-Cryptoxanthin fromCitrusjuices: assessment of bioaccessibility using anin vitrodigestion/Caco-2 cell culture model. British Journal of Nutrition, 2007, 97, 883-890.	2.3	100
65	Human Plasma Levels of Vitamin E and Carotenoids Are Associated with Genetic Polymorphisms in Genes Involved in Lipid Metabolism , ,3. Journal of Nutrition, 2007, 137, 2653-2659.	2.9	144
66	Effect of the main dietary antioxidants (carotenoids, γ-tocopherol, polyphenols, and vitamin C) on α-tocopherol absorption. European Journal of Clinical Nutrition, 2007, 61, 1167-1173.	2.9	54
67	Bioaccessibility of Carotenoids and Vitamin E from Their Main Dietary Sources. Journal of Agricultural and Food Chemistry, 2006, 54, 8749-8755.	5.2	371
68	Pancreatic lipase and pancreatic lipase-related protein 2, but not pancreatic lipase-related protein 1, hydrolyze retinyl palmitate in physiological conditions. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2006, 1761, 4-10.	2.4	72
69	Scavenger Receptor Class B Type I (SR-BI) Is Involved in Vitamin E Transport across the Enterocyte. Journal of Biological Chemistry, 2006, 281, 4739-4745.	3.4	206
70	Lutein transport by Caco-2 TC-7 cells occurs partly by a facilitated process involving the scavenger receptor class B type I (SR-BI). Biochemical Journal, 2005, 387, 455-461.	3.7	233
71	Enrichment of Tomato Paste with 6% Tomato Peel Increases Lycopene and β-Carotene Bioavailability in Men. Journal of Nutrition, 2005, 135, 790-794.	2.9	63
72	Processing of vegetable-borne carotenoids in the human stomach and duodenum. American Journal of Physiology - Renal Physiology, 2003, 284, G913-G923.	3.4	207