Emmanuelle Reboul

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4586350/publications.pdf

Version: 2024-02-01

72 papers 4,182 citations

126708 33 h-index 64 g-index

74 all docs

74 docs citations

74 times ranked 3766 citing authors

#	Article	IF	CITATIONS
1	Bioaccessibility of Carotenoids and Vitamin E from Their Main Dietary Sources. Journal of Agricultural and Food Chemistry, 2006, 54, 8749-8755.	2.4	371
2	Lutein transport by Caco-2 TC-7 cells occurs partly by a facilitated process involving the scavenger receptor class B type I (SR-BI). Biochemical Journal, 2005, 387, 455-461.	1.7	233
3	Absorption of Vitamin A and Carotenoids by the Enterocyte: Focus on Transport Proteins. Nutrients, 2013, 5, 3563-3581.	1.7	222
4	Processing of vegetable-borne carotenoids in the human stomach and duodenum. American Journal of Physiology - Renal Physiology, 2003, 284, G913-G923.	1.6	207
5	Scavenger Receptor Class B Type I (SR-BI) Is Involved in Vitamin E Transport across the Enterocyte. Journal of Biological Chemistry, 2006, 281, 4739-4745.	1.6	206
6	Proteins involved in uptake, intracellular transport and basolateral secretion of fat-soluble vitamins and carotenoids by mammalian enterocytes. Progress in Lipid Research, 2011, 50, 388-402.	5 . 3	193
7	Vitamin D intestinal absorption is not a simple passive diffusion: Evidences for involvement of cholesterol transporters. Molecular Nutrition and Food Research, 2011, 55, 691-702.	1.5	161
8	Fat-soluble vitamin intestinal absorption: Absorption sites in the intestine and interactions for absorption. Food Chemistry, 2015, 172, 155-160.	4.2	148
9	Human Plasma Levels of Vitamin E and Carotenoids Are Associated with Genetic Polymorphisms in Genes Involved in Lipid Metabolism , ,3. Journal of Nutrition, 2007, 137, 2653-2659.	1.3	144
10	Nutritional Composition and Bioactive Content of Legumes: Characterization of Pulses Frequently Consumed in France and Effect of the Cooking Method. Nutrients, 2018, 10, 1668.	1.7	144
11	Mechanisms of Carotenoid Intestinal Absorption: Where Do We Stand?. Nutrients, 2019, 11, 838.	1.7	130
12	Lycopene Absorption in Human Intestinal Cells and in Mice Involves Scavenger Receptor Class B Type I but Not Niemann-Pick C1-Like 1. Journal of Nutrition, 2008, 138, 1432-1436.	1.3	118
13	From carotenoid intake to carotenoid blood and tissue concentrations – implications for dietary intake recommendations. Nutrition Reviews, 2021, 79, 544-573.	2.6	113
14	CD36 and SR-BI Are Involved in Cellular Uptake of Provitamin A Carotenoids by Caco-2 and HEK Cells, and Some of Their Genetic Variants Are Associated with Plasma Concentrations of These Micronutrients in Humans. Journal of Nutrition, 2013, 143, 448-456.	1.3	109
15	Vitamin E Bioavailability: Mechanisms of Intestinal Absorption in the Spotlight. Antioxidants, 2017, 6, 95.	2.2	102
16	\hat{l}^2 -Cryptoxanthin from Citrusjuices: assessment of bioaccessibility using anin vitrodigestion/Caco-2 cell culture model. British Journal of Nutrition, 2007, 97, 883-890.	1.2	100
17	Differential effect of dietary antioxidant classes (carotenoids, polyphenols, vitamins C and E) on lutein absorption. British Journal of Nutrition, 2007, 97, 440-446.	1.2	79
18	Simple and fast HPLC method for simultaneous determination of retinol, tocopherols, coenzyme Q10 and carotenoids in complex samples. Food Chemistry, 2012, 134, 2560-2564.	4.2	79

#	Article	IF	CITATIONS
19	Pancreatic lipase and pancreatic lipase-related protein 2, but not pancreatic lipase-related protein 1, hydrolyze retinyl palmitate in physiological conditions. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2006, 1761, 4-10.	1.2	72
20	ATP-binding cassette transporter A1 is significantly involved in the intestinal absorption of \hat{l}_{\pm} - and \hat{l}_{\pm} -tocopherol but not in that of retinyl palmitate in mice. American Journal of Clinical Nutrition, 2009, 89, 177-184.	2.2	71
21	Enrichment of Tomato Paste with 6% Tomato Peel Increases Lycopene and \hat{l}^2 -Carotene Bioavailability in Men. Journal of Nutrition, 2005, 135, 790-794.	1.3	63
22	Intestinal absorption of vitamin D: from the meal to the enterocyte. Food and Function, 2015, 6, 356-362.	2.1	63
23	Fatty acids affect micellar properties and modulate vitamin D uptake and basolateral efflux in Caco-2 cells. Journal of Nutritional Biochemistry, 2013, 24, 1751-1757.	1.9	61
24	Intestinal Scavenger Receptors Are Involved in Vitamin K1 Absorption. Journal of Biological Chemistry, 2014, 289, 30743-30752.	1.6	58
25	Human fasting plasma concentrations of vitamin E and carotenoids, and their association with genetic variants in apo C-III, cholesteryl ester transfer protein, hepatic lipase, intestinal fatty acid binding protein and microsomal triacylglycerol transfer protein. British Journal of Nutrition, 2009, 101. 680-687.	1.2	57
26	Phytosterols can impair vitamin D intestinal absorption in vitro and in mice. Molecular Nutrition and Food Research, 2011, 55, S303-11.	1.5	55
27	Effect of the main dietary antioxidants (carotenoids, \hat{l}^3 -tocopherol, polyphenols, and vitamin C) on \hat{l}_\pm -tocopherol absorption. European Journal of Clinical Nutrition, 2007, 61, 1167-1173.	1.3	54
28	Re-assembled casein micelles improve in vitro bioavailability of vitamin D in a Caco-2 cell model. Food and Function, 2017, 8, 2133-2141.	2.1	50
29	Vitamin E decreases endogenous cholesterol synthesis and apo-Al-mediated cholesterol secretion in Caco-2 cells. Journal of Nutritional Biochemistry, 2010, 21, 1207-1213.	1.9	48
30	Respective contributions of intestinal Niemann-Pick C1-like 1 and scavenger receptor class B type I to cholesterol and tocopherol uptake: $\langle i \rangle$ in $\langle i \rangle \langle i \rangle \langle i \rangle$, $\langle i \rangle$ in vitro $\langle i \rangle$ studies. British Journal of Nutrition, 2012, 107, 1296-1304.	1.2	46
31	Comparison of different vehicles to study the effect of tocopherols on gene expression in intestinal cells. Free Radical Research, 2008, 42, 523-530.	1.5	38
32	Phytoene and Phytofluene Isolated from a Tomato Extract are Readily Incorporated in Mixed Micelles and Absorbed by Cacoâ€2 Cells, as Compared to Lycopene, and SRâ€BI is Involved in their Cellular Uptake. Molecular Nutrition and Food Research, 2018, 62, e1800703.	1.5	37
33	A Carboxy-Terminal Affinity Tag for the Purification and Mass Spectrometric Characterization of Integral Membrane Proteins. Journal of Proteome Research, 2009, 8, 2388-2396.	1.8	36
34	Clusterâ€determinant 36 (CD36) impacts on vitamin E postprandial response. Molecular Nutrition and Food Research, 2014, 58, 2297-2306.	1.5	35
35	Vitamin E intestinal absorption: Regulation of membrane transport across the enterocyte. IUBMB Life, 2019, 71, 416-423.	1.5	33
36	Comparison of the bioavailability and intestinal absorption sites of phytoene, phytofluene, lycopene and β-carotene. Food Chemistry, 2019, 300, 125232.	4.2	32

#	Article	IF	Citations
37	Direct and Rapid Profiling of Biophenols in Olive Pomace by UHPLC-DAD-MS. Food Analytical Methods, 2018, 11, 1001-1010.	1.3	31
38	ABCG1 is involved in vitamin E efflux. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2014, 1841, 1741-1751.	1.2	28
39	ABCB1 (Pâ€glycoprotein) regulates vitamin D absorption and contributes to its transintestinal efflux. FASEB Journal, 2019, 33, 2084-2094.	0.2	25
40	Interlocking of \hat{l}^2 -carotene in beta-lactoglobulin aggregates produced under high pressure. Food Chemistry, 2013, 139, 253-260.	4.2	24
41	\hat{l}^2 -Lactoglobulin as a Vector for \hat{l}^2 -Carotene Food Fortification. Journal of Agricultural and Food Chemistry, 2014, 62, 5916-5924.	2.4	24
42	Micellar lipid composition affects micelle interaction with class B scavenger receptor extracellular loops. Journal of Lipid Research, 2015, 56, 1123-1133.	2.0	22
43	Cholesterol transport via ABCA1: New insights from solid-phase binding assay. Biochimie, 2013, 95, 957-961.	1.3	19
44	A Combination of Single-Nucleotide Polymorphisms Is Associated with Interindividual Variability in Cholecalciferol Bioavailability in Healthy Men. Journal of Nutrition, 2016, 146, 2421-2428.	1.3	17
45	Comparison of the Micellar Incorporation and the Intestinal Cell Uptake of Cholecalciferol, 25-Hydroxycholecalciferol and 1-1±-Hydroxycholecalciferol. Nutrients, 2017, 9, 1152.	1.7	17
46	Characterization of hydroxytyrosol-β-cyclodextrin complexes in solution and in the solid state, a potential bioactive ingredient. LWT - Food Science and Technology, 2019, 102, 317-323.	2.5	17
47	Efficacy of two vitamin E formulations in patients with abetalipoproteinemia and chylomicron retention disease. Journal of Lipid Research, 2018, 59, 1640-1648.	2.0	16
48	Pinoresinol of olive oil decreases vitamin D intestinal absorption. Food Chemistry, 2016, 206, 234-238.	4.2	14
49	Simple Fast Quantification of Cholecalciferol, 25-Hydroxyvitamin D and 1,25-Dihydroxyvitamin D in Adipose Tissue Using LC-HRMS/MS. Nutrients, 2019, 11, 1977.	1.7	14
50	Evaluation of vitamin D bioaccessibility and mineral solubility from test meals containing meat and/or cereals and/or pulses using in vitro digestion. Food Chemistry, 2021, 347, 128621.	4.2	14
51	Effect of Foods and \hat{I}^2 -Cyclodextrin on the Bioaccessibility and the Uptake by Caco-2 Cells of Hydroxytyrosol from Either a Pure Standard or Alperujo. Journal of Agricultural and Food Chemistry, 2018, 66, 4614-4620.	2.4	13
52	\hat{l}^2 -Cyclodextrin Does not Alter the Bioaccessibility and the Uptake by Caco-2 Cells of Olive By-Product Phenolic Compounds. Nutrients, 2018, 10, 1653.	1.7	12
53	The Presence of Pulses within a Meal can Alter Fatâ€Soluble Vitamin Bioavailability. Molecular Nutrition and Food Research, 2019, 63, e1801323.	1.5	10
54	Bioaccessibility and uptake by Caco-2 cells of carotenoids from cereal-based products enriched with butternut squash (Cucurbita moschata L.). Food Chemistry, 2022, 385, 132595.	4.2	10

#	Article	IF	Citations
55	$\hat{l}^2\hat{a}$ €Carotene Bioavailability and Conversion Efficiency Are Significantly Affected by Sex in Rats. Molecular Nutrition and Food Research, 2021, 65, e2100650.	1.5	9
56	Opposite Effects of the Spinach Food Matrix on Lutein Bioaccessibility and Intestinal Uptake Lead to Unchanged Bioavailability Compared to Pure Lutein. Molecular Nutrition and Food Research, 2018, 62, e1800185.	1.5	8
57	Food Structure Modulates the Bioavailability of Triglycerides and Vitamin D, and Partly That of Lutein: A Randomized Trial with a Crossover Design in Adults. Molecular Nutrition and Food Research, 2020, 64, e2000228.	1.5	8
58	P-glycoprotein (ABCB1) is involved in vitamin K efflux. Food Chemistry, 2021, 343, 128510.	4.2	8
59	Reduction of pulse "antinutritional―content by optimizing pulse canning process is insufficient to improve fat-soluble vitamin bioavailability. Food Chemistry, 2022, 370, 131021.	4.2	8
60	Hesperidin increases intestinal β,β-carotene 15-15′ mono-oxygenase 1 (BCMO1) activity in Mongolian gerbils (Meriones unguiculatus) fed with β-carotene-free diet. Food Chemistry, 2014, 159, 477-485.	4.2	7
61	Pulses Twice a Week in Replacement of Meat Modestly Increases Diet Sustainability. Nutrients, 2021, 13, 3059.	1.7	7
62	Mechanisms of absorption of vitamin D ₃ delivered in protein nanoparticles in the absence and presence of fat. Food and Function, 2021, 12, 4935-4946.	2.1	6
63	In vitro solubilization of fat-soluble vitamins in structurally defined mixed intestinal assemblies. Journal of Colloid and Interface Science, 2021, 589, 229-241.	5.0	6
64	The gut: a regulatory hall governing fat-soluble micronutrient absorption. American Journal of Clinical Nutrition, 2019, 110, 1045-1046.	2.2	5
65	The Complex ABCG5/ABCG8 Regulates Vitamin D Absorption Rate and Contributes to its Efflux from the Intestine. Molecular Nutrition and Food Research, 2021, 65, e2100617.	1.5	5
66	Comparison of \hat{l}_{\pm} -Tocopherol, \hat{l}_{\pm} -Tocopherol Acetate, and \hat{l}_{\pm} -Tocopheryl Polyethylene Glycol Succinate 1000 Absorption by Caco-2 TC7 Intestinal Cells. Nutrients, 2021, 13, 129.	1.7	5
67	One-Step Extraction of Olive Phenols from Aqueous Solution Using \hat{I}^2 -Cyclodextrin in the Solid State, a Simple Eco-Friendly Method Providing Photochemical Stability to the Extracts. Molecules, 2021, 26, 4463.	1.7	2
68	Evaluation of vitamin D bioaccessibility and iron solubility from test meals containing meat and/or cereals and/or legumes. Proceedings of the Nutrition Society, 2020, 79, .	0.4	1
69	Vitamin A Deficiency during the Perinatal Period and First Weeks of Life Modifies Vitamin A and Lipid Postprandial Metabolism in Both Female and Male Young Rats. Molecular Nutrition and Food Research, 2021, 65, 2100451.	1.5	1
70	Absorption intestinale des vitamines liposolubles. Oleagineux Corps Gras Lipides, 2011, 18, 53-58.	0.2	0
71	Answer to Dr. Gylling's Letter to the Editor. Molecular Nutrition and Food Research, 2012, 56, 1195-1196.	1.5	O
72	Competition Effects on Carotenoid Absorption by Caco-2 Cells. , 2009, , 381-386.		0