Muhammad Rabnawaz

List of Publications by Citations

Source: https://exaly.com/author-pdf/4586339/muhammad-rabnawaz-publications-by-citations.pdf

Version: 2024-04-04

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

18 983 45 31 h-index g-index citations papers 1,292 5.15 47 5.7 avg, IF L-index ext. citations ext. papers

#	Paper	IF	Citations
45	A roadmap towards green packaging: the current status and future outlook for polyesters in the packaging industry. <i>Green Chemistry</i> , 2017 , 19, 4737-4753	10	161
44	Fluorine-Free Anti-Smudge Polyurethane Coatings. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 12722-7	16.4	98
43	Graft-copolymer-based approach to clear, durable, and anti-smudge polyurethane coatings. Angewandte Chemie - International Edition, 2015, 54, 6516-20	16.4	86
42	Upgrading pyrolysis bio-oil through hydrodeoxygenation (HDO) using non-sulfided Fe-Co/SiO2 catalyst. <i>Energy Conversion and Management</i> , 2017 , 150, 331-342	10.6	81
41	Hydrophilically patterned superhydrophobic cotton fabrics and their use in ink printing. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 8094-8102	13	61
40	Preparation and Application of a Dual Light-Responsive Triblock Terpolymer. <i>Macromolecules</i> , 2012 , 45, 5586-5595	5.5	43
39	Catalytic liquefaction of pine sawdust and in-situ hydrogenation of bio-crude over bifunctional Co-Zn/HZSM-5 catalysts. <i>Fuel</i> , 2018 , 223, 252-260	7.1	35
38	Clear antismudge unimolecular coatings of diblock copolymers on glass plates. <i>ACS Applied Materials & ACS Applied & ACS</i>	9.5	29
37	Fabrication of Food-Safe Water-Resistant Paper Coatings Using a Melamine Primer and Polysiloxane Outer Layer. <i>ACS Omega</i> , 2018 , 3, 11909-11916	3.9	29
36	Oil- and Water-Resistant Coatings for Porous Cellulosic Substrates. <i>ACS Applied Polymer Materials</i> , 2019 , 1, 103-111	4.3	28
35	Synthesis of poly(dimethylsiloxane)-block-poly[3-(triisopropyloxysilyl) propyl methacrylate] and its use in the facile coating of hydrophilically patterned superhydrophobic fabrics. <i>RSC Advances</i> , 2015 , 5, 39505-39511	3.7	26
34	Chitosan@raftPoly(dimethylsiloxane)/Zein Coatings for the Fabrication of Environmentally Friendly Oil- and Water-Resistant Paper. ACS Sustainable Chemistry and Engineering, 2020, 8, 5147-5155	8.3	25
33	Coating of silica particles by fluorinated diblock copolymers and use of the resultant silica for superamphiphobic surfaces. <i>Polymer</i> , 2015 , 64, 153-162	3.9	24
32	Fluorine-Free Anti-Smudge Polyurethane Coatings. <i>Angewandte Chemie</i> , 2015 , 127, 12913-12918	3.6	24
31	A closed-loop and sustainable approach for the fabrication of plastic-free oil- and water-resistant paper products. <i>Green Chemistry</i> , 2019 , 21, 5691-5700	10	23
30	A novel dual-layer approach towards omniphobic polyurethane coatings RSC Advances, 2019 , 9, 26703-	-2 ₃ 6 7 711	22
29	Simple Design for Durable and Clear Self-Cleaning Coatings. ACS Applied Polymer Materials, 2019 , 1, 265	5 <u>4-</u> 366	7 19

28	Food-Safe Chitosan Dein Dual-Layer Coating for Water- and Oil-Repellent Paper Substrates. <i>ACS Sustainable Chemistry and Engineering</i> , 2020 , 8, 6887-6897	8.3	18	
27	Dual-Layer Approach toward Self-Healing and Self-Cleaning Polyurethane Thermosets. <i>Polymers</i> , 2019 , 11,	4.5	17	
26	Self-healing and self-cleaning clear coating. <i>Journal of Colloid and Interface Science</i> , 2020 , 577, 311-318	9.3	17	
25	Covalent Adaptable Network and Self-Healing Materials: Current Trends and Future Prospects in Sustainability. <i>Polymers</i> , 2020 , 12,	4.5	15	
24	Triblock Terpolymers Bearing a Redox-Cleavable Junction and a Photo-Cross-Linkable Block. <i>Macromolecules</i> , 2014 , 47, 5115-5123	5.5	14	
23	Response Surface Methodology Design for Biobased and Sustainable Coatings for Water- and Oil-Resistant Paper. <i>ACS Applied Polymer Materials</i> , 2020 , 2, 1378-1387	4.3	13	
22	High modulus, fluorine-free self-healing anti-smudge coatings. <i>Progress in Organic Coatings</i> , 2020 , 145, 105703	4.8	13	
21	Graft-Copolymer-Based Approach to Clear, Durable, and Anti-Smudge Polyurethane Coatings. <i>Angewandte Chemie</i> , 2015 , 127, 6616-6620	3.6	12	
20	Starch and Zein Biopolymers as a Sustainable Replacement for PFAS, Silicone Oil, and Plastic-Coated Paper. <i>Industrial & Engineering Chemistry Research</i> , 2020 , 59, 12075-12084	3.9	11	
19	Zein and PVOH-Based Bilayer Approach for Plastic-Free, Repulpable and Biodegradable Oil- and Water-Resistant Paper as a Replacement for Single-Use Plastics. <i>Industrial & Discourse amp; Engineering Chemistry Research</i> , 2020 , 59, 17856-17866	3.9	8	
18	Synthesis of High Molecular Weight Polyester Using in Situ Drying Method and Assessment of Water Vapor and Oxygen Barrier Properties. <i>Polymers</i> , 2018 , 10,	4.5	7	
17	Quantification of residual liquid on repellent cotton fabrics after liquid roll off. <i>RSC Advances</i> , 2015 , 5, 103722-103728	3.7	4	
16	Fabrication of oil- and water-resistant paper without creating microplastics on disposal. <i>Journal of Applied Polymer Science</i> , 2021 , 138, 49692	2.9	4	
15	Synthesis of high molecular weight aromatic polyesters via integrated alternating ring-opening copolymerization and chain extension methods. <i>Journal of Applied Polymer Science</i> , 2019 , 136, 47200	2.9	2	
14	A comparative study of thallium(III) and iodine(III)-mediated ring contraction reactions for the synthesis of indane. <i>New Journal of Chemistry</i> , 2021 , 45, 2078-2084	3.6	2	
13	Melt-reprocessing of mixed polyurethane thermosets. <i>Green Chemistry</i> , 2021 , 23, 4771-4779	10	2	
12	Oil- and water-resistant paper substrate using blends of chitosan-graft-polydimethylsiloxane and poly(vinyl alcohol). <i>Journal of Applied Polymer Science</i> , 2021 , 138, 50494	2.9	2	
11	New alternatives to single-use plastics: Starch and chitosan-graft-polydimethylsiloxane-coated paper for water- and oil-resistant applications. <i>Nano Select</i> ,	3.1	2	

10	Iodine(III)-Promoted Ring Expansion Reactions: A Metal-Free Approach toward Seven-Membered Heterocyclic Rings. <i>Asian Journal of Organic Chemistry</i> , 2021 , 10, 2549	3	2
9	Base-Layer-Driven Self-Healing Materials. ACS Applied Polymer Materials, 2021, 3, 3922-3928	4.3	O
8	Synthesis of novel macrocycles carrying pincer-type ligands as future candidates for potential applications in size-selective, stereochemical and recyclable catalysts. <i>Journal of Molecular Structure</i> , 2018 , 1155, 734-744	3.4	O
7	Oxygen and water vapor barrier properties of polyvinyl alcohol and zein bilayer-coated paper. Journal of Applied Polymer Science,51707	2.9	O
6	Are telechelic polysiloxanes better than hemi-telechelic for self-cleaning applications?. <i>Journal of Colloid and Interface Science</i> , 2021 , 600, 174-186	9.3	О
5	REktitelbild: Graft-Copolymer-Based Approach to Clear, Durable, and Anti-Smudge Polyurethane Coatings (Angew. Chem. 22/2015). <i>Angewandte Chemie</i> , 2015 , 127, 6752-6752	3.6	
4	Cover Image, Volume 139, Issue 7. <i>Journal of Applied Polymer Science</i> , 2022 , 139, 51078	2.9	
3	Universal polysiloxane additives for UV curable self-cleaning engineered surfaces. <i>Progress in Organic Coatings</i> , 2022 , 163, 106686	4.8	
2	Green analogs of polybutadienes from carbon dioxide and epoxy-based feedstocks. <i>Journal of Applied Polymer Science</i> , 2021 , 138, 50708	2.9	
1	A Dual-Wall 3D-Printed Anti-tampering Medical Bottle. <i>Journal of Packaging Technology and Research</i> , 2021 , 5, 89-95	3.1	